Answer:
24.084 m/s
Explanation:
From the law of conservation of linear momentum
Total momentum before collision equals to the total momentum after collision
Since momentum=mv where m is mass and v is velocity
where
is the mass of the truck,
is velocity of the truck,
is the common velocity of moving and standing truck after collision and
is the mass of the standing truck
Making
the subject we obtain
Substituting
as 25000 Kg,
as 22.3 m/s,
as 2000 Kg we obtain
Therefore, assuming no friction and considering that after collision they still move eastwards hence common velocity and initial truck velocities are positive
The truck was moving at 24.084 m/s
The frictional force is directly proportional to the force that is perpendicular on the surface.
When the body is placed on a horizontal level with zero inclination, the only force acting on the body is the gravitational force which always pulls the body down. The gravitational force, in this case, is the perpendicular force to the surface. Accordingly, this entire force is used to generate friction
Now as the inclination of the surface increases, the gravitational force is no longer the perpendicular force of the body, its value decreases, which means only a part is used to generate frictional force. Consequently, frictional force decreases.
When the inclination reaches 90 degrees, the gravitational force does not act along the normal and accordingly, no friction force is generated.
The second option rolling friction
Answer:
Option C. 210 J.
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 0.75 Kg
Height (h) = 12 m
Velocity (v) = 18 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Total Mechanical energy (ME) =?
Next, we shall determine the potential energy of the plane. This can be obtained as follow:
Mass (m) = 0.75 Kg
Height (h) = 12 m
Acceleration due to gravity (g) = 9.8 m/s²
Potential energy (PE) =?
PE = mgh
PE = 0.75 × 9.8 × 12
PE = 88.2 J
Next, we shall determine the kinetic energy of the plane. This can be obtained as follow:
Mass (m) = 0.75 Kg
Velocity (v) = 18 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 0.75 × 18²
KE = ½ × 0.75 × 324
KE = 121.5 J
Finally, we shall determine the total mechanical energy of the plane. This can be obtained as follow:
Potential energy (PE) = 88.2 J
Kinetic energy (KE) = 121.5 J
Total Mechanical energy (ME) =?
ME = PE + KE
ME = 88.2 + 121.5
ME = 209.7 J
ME ≈ 210 J
Therefore, the total mechanical energy of the plane is 210 J.
Answer:
The time of motion is 0.64 s.
Explanation:
Given;
mass of the apple, m = 107 g
height of fall, h = 2 m
The velocity of the apple when it hits the ground is calculated from the law of conservation of energy;

The time of motion is calculated;
v = u + gt
6.261 = 0 + 9.8t
6.261 = 9.8t
t = 6.261 / 9.8
t = 0.64 s
Therefore, the time of motion is 0.64 s