Answer:
Gravity is the force by which a planet or other body draws objects toward its center. The force of gravity keeps all of the planets in orbit around the sun.
<em><u>Please mark as brainliest</u></em>
Have a great day, be safe and healthy
Thank u
XD
Answer:
The hiker followed a road heading north for 2 miles in 30 minutes.
Explanation:
In order to describe the motion of an object, distance covered and time taken must be required. The total path covered by an object is called the distance travelled.
The hiker followed a road heading north for 2 miles in 30 minutes. This describes the motion of hiker. The motion shows how fast the hiker is moving.
Distance, d = 2 miles = 3218.6 m
times, t = 30 minutes = 1800 seconds
So, we can say that the hiker is moving with a speed of 1.78 m/s in north direction.
Hence, this is the required solution.
Answer:
Relative age-dating involves comparing a rock layer or rock structure with other near-by layers or structures. Using the principles of superposition and cross-cutting relationships, and structures such as unconformities, one can determine the order of geological events.
Answer: a) 7.1 * 10^3 N; b) -880 N directed out of the curve.
Explanation: In order to solve this problem we have to use the Newton laws, then we have the following:
Pcos 15°-N=0
Psin15°-f= m*ac
from the first we obtain N, the normal force
N=750Kg*9.8* cos (15°)= 7.1 *10^3 N
Then to calculate the frictional force (f) we can use the second equation
f=P sin (15°) -m*ac where ac is the centripetal acceletarion which is equal to v^2/r
f= 750 *9.8 sin(15°)-750*(85*1000/3600)^2/150= -880 N
To solve this problem it is necessary to apply the concepts related to the Third Law of Kepler.
Kepler's third law tells us that the period is defined as

The given data are given with respect to known constants, for example the mass of the sun is

The radius between the earth and the sun is given by

From the mentioned star it is known that this is 8.2 time mass of sun and it is 6.2 times the distance between earth and the sun
Therefore:


Substituting in Kepler's third law:






Therefore the period of this star is 3.8years