No, there isn't. Please consult your doctor if this is the case with yours or someone you know.
A "heating curve" is a graph that shows the temperature of the substance
against the amount of heat you put into it.
For most of the graph, as you'd expect, the temperature goes up as you
add heat, and it goes down as you take heat away. BUT ... While the
substance is changing state, its temperature doesn't change even though
you're putting heat in or taking heat out.
So that part of the graph is a horizontal line.
Answer:
346.66 Hz
Explanation:
= Length of string which is unfingered = l
= Length of string which is vibrate when fingered = 
= Unfingered frequency = 260 Hz
= Fingered frequency
Frequency is inversely proportional to length

So,

The frequency of the fingered string is 346.66 Hz
Answer:
<em>B) 1.0 × 10^5 V</em>
Explanation:
<u>Electric Potential Due To Point Charges
</u>
The electric potential produced from a point charge Q at a distance r from the charge is

The total electric potential for a system of point charges is equal to the sum of their individual potentials. This is a scalar sum, so direction is not relevant.
We must compute the total electric potential in the center of the square. We need to know the distance from all the corners to the center. The diagonal of the square is

where a is the length of the side.
The distance from any corner to the center is half the diagonal, thus


The total potential is

Where V1 and V2 are produced by the +4\mu C charges and V3 and V4 are produced by the two opposite charges of
. Since all the distances are equal, and the charges producing V3 and V4 are opposite, V3 and V4 cancel each other. We only need to compute V1 or V2, since they are equal, but they won't cancel.


The total potential is

