363 m/s is the speed of sound through the air in the pipe.
Answer: Option B
<u>Explanation:</u>
The formula used to calculate the wavelength given as below,

--------> eq. 1
In power system, harmonics define by positive integers of the fundamental frequency. So the third order harmonic is a multiple of the third fundamental frequency. Each harmonic creates an additional node and an opposite node, as well as an additional half wave within the string.
If the number of waves in the circuit is known, the comparison between standing wavelength and circuit length can be calculated algebraically. The general expression for this given as,

For first harmonic, n =1

For second harmonic, n =2

For third harmonic, n =3

-------> eq. 2
Here given f = 939 Hz, L = 0.58 m...And, substitute eq 2 in eq 1 and values, we get

Answer:
Lose electrons
Explanation:
When a positively charged conductor touches a neutral conductor, the neutral conductor will lose electrons. Only electrons can move from one conductor to another, so if the neutral conductor ended up with a positive charge it means it lost electrons. The conductor touching and the neutral conductor both end up being charged positively.
Answer:
the moment of inertia of the merry go round is 38.04 kg.m²
Explanation:
We are given;
Initial angular velocity; ω_1 = 37 rpm
Final angular velocity; ω_2 = 19 rpm
mass of child; m = 15.5 kg
distance from the centre; r = 1.55 m
Now, let the moment of inertia of the merry go round be I.
Using the principle of conservation of angular momentum, we have;
I_1 = I_2
Thus,
Iω_1 = I'ω_2
where I' is the moment of inertia of the merry go round and child which is given as I' = mr²
Thus,
I x 37 = ( I + mr²)19
37I = ( I + (15.5 x 1.55²))19
37I = 19I + 684.7125
37I - 19 I = 684.7125
18I = 684.7125
I = 684.7125/18
I = 38.04 kg.m²
Thus, the moment of inertia of the merry go round is 38.04 kg.m²
Answer:
(a) Power= 207.97 kW
(b) Range= 5768.6 meter
Explanation:
Given,
Mass of bullet, 
Kinetic energy imparted, 
Length of rifle barrel, 
(a)
Let the speed of bullet when it leaves the barrel is
.
Kinetic energy, 



Initial speed of bullet, 
The average speed in the barrel,

Time taken by bullet to cross the barrel, 

Power,

(b)
In projectile motion,
Maximum height, 
Range, 
given that, 
then, 