Does this help?
When an object is
immersed in a fluid (in this case water, but may include both liquids and
gases) the fluid exerts an upward force on the object which is called buoyancy
force or <span>up-thrust. Archimedes’ Principle states that the buoyant
force (upward push or force) applied to an object is equal to the weight of the fluid that the object takes the space of by
that object. Thus when an object is
placed in water the rise in the water level is dictated by the mass of that
object.</span>
<span>
</span>
<span>So for example if you fill a bucket with water and you drop a stone in that bucket, if you measure the weight of the water that overflows from the bucket due to the stone being dropped into the bucket is equivalent to the pushing force that the water has on the stone (as the stone drops to the bottom of the bucket the water is pushing it to stay afloat but the rock is more dense than water and as such its downthrust exceeds water's upthrust).</span>
Answer:
the speed of the ball is 10 m/s
Explanation:
Given;
magnitude of exerted force, F = 400 N
mass of the ball, m = 2 kg
radius of the circle, r = 0.5
The speed of the ball is calculated by applying centripetal force formula;

Therefore, the speed of the ball is 10 m/s
Consider a long train moving at speed v. Now consider a passenger throwing a ball inside this train, towards the back of the train, with same velocity v (but in the opposite direction of the train movement).
- A passenger inside the train will see the ball moving with speed v
- For an observer outside the train, however, the ball will appear as still. In fact, for him the ball will have a speed v (given by the movement of the train) -v (velocity of the ball but moving in the opposite direction), so the net velocity will be v+(-v)=0.
Given: Heat Qout means useful work = 2800 J
Heat Qin = 8900 J
Required; Efficiency = ?
Formula: Efficiency = Qout/Qin = x 100%
= 2800 J/8900 J = 0.3146 X 100 %
Efficiency = 31.46%