Total distance covered is 47.1 m whereas displacement is zero.
<h3>Calculation:</h3>
Given,
Diameter, d = 5 m
No. of revolutions = 3
Radius, r = 5/2 = 2.5 m
To find,
Distance =?
Displacement =?
Distance covered in one revolution = 2πr
Put the values in this,
Distance = 2 × 3.14 × 2.5
= 15.7 m
Total distance covered in 3 revolution = 3 × 31.4
= 47.1 m
Displacement is the change in the position of the object or the distance between the initial and final position.
After 3 revolutions the particle comes back to its initial position. Therefore, the displacement is zero.
Hence, the total distance covered in 3 resolutions is 47.1 m whereas displacement is zero.
Learn more about distance and displacement here:
brainly.com/question/3243551
#SPJ4
Refer to the diagram shown below.
We want to find y in terms of d, φ and θ.
By definition,

Therefore
y = x tan(θ) (1)
y = (x - d) tan(φ) (2)
Equate (1) and (2).
![(x - d) \, tan(\phi) = x \, tan(\theta) \\ x[tan(\phi) - tan(\theta)] = d \, tan(\phi) \\ x= \frac{d tan(\phi)}{tan(\phi)-tan(\theta)}](https://tex.z-dn.net/?f=%28x%20-%20d%29%20%5C%2C%20tan%28%5Cphi%29%20%3D%20x%20%5C%2C%20tan%28%5Ctheta%29%20%5C%5C%20x%5Btan%28%5Cphi%29%20-%20tan%28%5Ctheta%29%5D%20%3D%20d%20%5C%2C%20tan%28%5Cphi%29%20%5C%5C%20x%3D%20%5Cfrac%7Bd%20tan%28%5Cphi%29%7D%7Btan%28%5Cphi%29-tan%28%5Ctheta%29%7D%20)
From (1), obtain the required expression for y.
Answer:
Using Ohm's Law:
V = IR
Where V = Voltage in Volts, I = Current in Ampere, R = Resistance in Ohms
V = IR
1.5 = I * 3
1.5 = 3I
3*I = 1.5
I = 1.5/3
I = 0.50 A
Current in the Circuit is 0.50 Ampere.
There are not enough electrons in atoms to affect the total mass, so the total mass is just the weight of the protons and neutrons.
Based on the data provided, the impulse of the floor on the ball is 59.4 Ns.
<h3>What is the impulse of the floor on the ball?</h3>
Using the equation of motion to determine the velocity at the end of the fall
Where v is velocity at the end of fall
u is initial velocity = 0
g is acceleration due to gravity = 9.81 m/s^2
h is height = 20
- Taking downward velocity as negative and up as positive
v^2 = 0 + 2 (9.81)(20)
v^2 = 392.4
v = - 19.8 m/s
The velocity, v after bouncing is calculated also:
u = 0
g = 9.81 m/s^2
h = 5.0 m
v^2 = 0 + 2(9.81)(5)
v^2 = 98.1
v = 9.904 m/s
- Impulse = change in momentum
- Impulse = m(v- u)
Impulse = 2.0 × (9.9 -(-19.8)
Impulse = 59.4 Ns
Therefore, the impulse of the floor on the ball is 59.4 Ns.
Learn more about impulse at: brainly.com/question/904448