Answer:
Partial pressure of CO₂ is 406.9 mmHg
Explanation:
To solve the question we should apply the concept of the mole fraction.
Mole fraction = Moles of gas / Total moles
We have the total moles of the mixture, if we have the moles for each gas inside. (3.63 moles of O₂, 1.49 moles of N₂ and 4.49 moles of CO₂)
Total moles = 3.63 mol O₂ + 1.49 mol N₂ + 4.49 mol CO₂ = 9.61 moles
To determiine the partial pressure of CO₂ we apply
Mole fraction of CO₂ → mol of CO₂ / Total moles = P. pressure CO₂ / Total P
Partial pressure of CO₂ = (mol of CO₂ / Total moles) . Total pressure
We replace values: (4.49 moles / 9.61 moles) . 871 mmHg = 406.9 mmHg
I think it might be A muscles help move nutrients through the body to the stomach
Answer:0.45L
Explanation:
molarity=0.15M
Mass=5g
No of moles=mass ➗ molecular mass
Molecular mass of KCL=39.0983x1+35.453x1
Molecular mass of KCL=74.5513
No of moles=5 ➗ 74.5513
No of moles=0.067
Volume in liters=No of moles ➗ molarity
Volume in liters=0.067 ➗ 0.15
Volume in liters=0.45L
Answer:
3.861x10⁻⁹ mol Pb⁺²
Explanation:
We can <u>define ppm as mg of Pb²⁺ per liter of water</u>.
We<u> calculate the mass of lead ion in 100 mL of water</u>:
- 100.0 mL ⇒ 100.0 / 1000 = 0.100 L
- 0.100 L * 0.0080 ppm = 8x10⁻⁴ mg Pb⁺²
Now we <u>convert mass of lead to moles</u>, using its molar mass:
- 8x10⁻⁴ mg ⇒ 8x10⁻⁴ / 1000 = 8x10⁻⁷ g
- 8x10⁻⁷ g Pb²⁺ ÷ 207.2 g/mol = 3.861x10⁻⁹ mol Pb⁺²