1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrews [41]
3 years ago
15

The current in a 20 mH inductor is known to be: 푖푖=40푚푚푚푚푡푡≤0푖푖=푚푚1푒푒−10,000푡푡+푚푚2푒푒−40,000푡푡푚푚푡푡≥0The voltage across the induct

or (passive sign convention) is -68 V at t = 0.a. Find the numerical expressions for i and v for t > 0. b. Specify the time intervals when the inductor is storing energy and the time intervals when the inductor is delivering energy.
Engineering
1 answer:
Anni [7]3 years ago
8 0

Answer:

a) The expression for electrical current: i = -0.134*e^(-10,000*t) + 0.174*e^(-40,000*t) A

The expression for voltage: v = 26.8*e^(-10,000*t) - 139.2*e^(-40,000*t) V

b) For t<=0 the inductor is storing energy and for t > 0 the inductor is delivering energy.

Explanation:

The question text is corrupted. I found the complete question on the web and it goes as follow:

The current in a 20 mH inductor is known to be: i = 40 mA at t<=0 and i = A1*e^(-10,000*t) + A2*e^(-40,000*t) A at t>0. The voltage across the inductor (passive sign convention) is -68 V at t = 0.

a. Find the numerical expressions for i and v for t>0.

b. Specify the time intervals when the inductor is storing energy and is delivering energy.

A inductor stores energy in the form of a magnetic field, it behaves in a way that oposes sudden changes in the electric current that flows through it, therefore at moment just after t = 0, that for convenience we'll call t = 0+, the current should be the same as t=0, so:

i = A1*e^(-10,000*(0)) + A2*e^(-40,000*(0))

40*10^(-3) = A1*e^(-10,000*0) + A2*e^(-40,000*0)

40*10^(-3) = (A1)*1 + (A2)*1

40*10^(-3) = A1 + A2

A1 + A2 = 40*10^(-3)

Since we have two variables (A1 and A2) we need another equation to be able to solve for both. For that reason we will use the voltage expression for a inductor, that is:

V = L*di/dt

We have the voltage drop across the inductor at t=0 and we know that the current at t=0 and the following moments after that should be equal, so we can use the current equation for t > 0 to find the derivative on that point, so:

di/dt = d(A1*e^(-10,000*t) + A2*e^(-40,000*t))/dt

di/dt = [d(-10,000*t)/dt]*A1*e^(-10,000*t) + [d(-40,000*t)/dt]*A2*e^(-40,000*t)

di/dt = -10,000*A1*e^(-10,000*t) -40,000*A2*e^(-40,000*t)

By applying t = 0 to this expression we have:

di/dt (at t = 0) = -10,000*A1*e^(-10,000*0) - 40,000*A2*e^(-40,000*0)

di/dt (at t = 0) = -10,000*A1*e^0 - 40,000*A2*e^0

di/dt (at t = 0) = -10,000*A1- 40,000*A2

We can now use the voltage equation for the inductor at t=0, that is:

v = L di/dt (at t=0)

68 = [20*10^(-3)]*(-10,000*A1 - 40,000*A2)

68 = -400*A1 -800*A2

-400*A1 - 800*A2 = 68

We now have a system with two equations and two variable, therefore we can solve it for both:

A1 + A2 = 40*10^(-3)

-400*A1 - 800*A2 = 68

Using the first equation we have:

A1 = 40*10^(-3) - A2

We can apply this to the second equation to solve for A2:

-400*[40*10^(-3) - A2] - 800*A2 = 68

-1.6 + 400*A2 - 800*A2 = 68

-1.6 -400*A2 = 68

-400*A2 = 68 + 1.6

A2 = 69.6/400 = 0.174

We use this value of A2 to calculate A1:

A1 = 40*10^(-3) - 0.174 = -0.134

Applying these values on the expression we have the equations for both the current and tension on the inductor:

i = -0.134*e^(-10,000*t) + 0.174*e^(-40,000*t) A

v = [20*10^(-3)]*[-10,000*(-0.134)*e^(-10,000*t) -40,000*(0.174)*e^(-40,000*t)]

v = [20*10^(-3)]*[1340*e^(-10,000*t) - 6960*e^(-40,000*t)]

v = 26.8*e^(-10,000*t) - 139.2*e^(-40,000*t) V

b) The question states that the current for the inductor at t > 0 is a exponential powered by negative numbers it is expected that its current will reach 0 at t = infinity. So, from t =0 to t = infinity the inductor is delivering energy. Since at time t = 0 the inductor already has a current flow of 40 mA and a voltage, we can assume it already had energy stored, therefore for t<0 it is storing energy.

You might be interested in
Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8 MPa, 560°C and the turbine exit pressur
hoa [83]

Answer:

1. The net power developed=9370.773KW

2. Thermal Efficiency= 0.058

Explanation

Check attachment

5 0
3 years ago
can anyone help me with this please.i have the current and pf for branch 1 and 2 but cant figure out the total current, pf and a
anyanavicka [17]

Answer:

  • branch 1: i = 25.440∠-32.005°; pf = 0.848 lagging
  • branch 2: i = 21.466∠63.435°; pf = 0.447 leading
  • total: i = 31.693∠10.392° leading; pf = 0.984 leading

Explanation:

To calculate the currents in the parallel branches, we need to know the impedance of each branch. That will be the sum of the resistance and reactance.

The inductive reactance is ...

  X_L=j\omega L=j2\pi fL=j100\pi\cdot 15.915\times10^{-3}\approx j4.99984\,\Omega

The capacitive reactance is ...

  X_C=\dfrac{1}{j\omega C}=\dfrac{-j}{100\pi\cdot 318.31\times10^{-6}F}\approx -j10.00000\,\Omega

<u>Branch 1</u>

The impedance of branch 1 is ...

  Z1 = 8 +j4.99984 Ω

so the current is ...

  I1 = V/Z = 240/(8 +j4.99984) ≈ 25.440∠-32.005°

The power factor is cos(-32.005°) ≈ 0.848 (lagging)

<u>Branch 2</u>

The impedance of branch 2 is ...

  Z2 = 5 -j10 Ω

so the current is ...

  I2 = 240/(5 +j10) ≈ 21.466∠63.435°

The power factor is cos(63.436°) ≈ 0.447 (leading)

<u>Total current</u>

The total current is the sum of the branch currents. A suitable calculator can add these vectors without first converting them to rectangular form.

  It = I1 +I2 = (21.573 -j13.483) +(9.6 +j19.2)

  It ≈ 31.173 +j5.717 ≈ 31.693∠10.392°

The power factor for the circuit is cos(10.392°) ≈ 0.984 (leading)

__

The phasor diagram of the currents is attached.

_____

<em>Additional comment</em>

Given two vectors, their sum can be computed several ways. One way to compute the sum is to use the Law of Cosines. In this application, the angle between the vectors is the supplement of the difference of the vector angles: 84.560°.

3 0
2 years ago
g An analog voice signal, sampled at the rate of 8 kHz (8000 samples/second), is to be transmitted by using binary frequency shi
slamgirl [31]

Answer:

The module is why it’s goin to work

Explanation:

4 0
3 years ago
When CO2 rises, temperature rises. Why do you think this is?
icang [17]

Answer:

The warming causes the oceans to release CO2. The CO2 amplifies the warming and mixes through the atmosphere, spreading warming throughout the planet. So CO2 causes warming AND rising temperature causes CO2 rise. Overall, about 90% of the global warming occurs after the CO2 increase.

Explanation:

6 0
3 years ago
Explain how smart materials can be used by manufacturers to improve health and safety for children's products and goods.​
Ierofanga [76]

...simplify devices, reducing weight and the chance of failure.

6 0
2 years ago
Other questions:
  • Oil with a specific gravity of 0.72 is used as the indicating fluid in a manometer. If the differential pressure across the ends
    6·1 answer
  • Water flovs in a pipe of diameter 150 mm. The velocity of the water is measured at a certain spot which reflects the average flo
    13·1 answer
  • Air is cooled and dehumidified as it flows over the coils of refrigeration system at 100 kPa from 30 ºC and relative humidityof
    14·1 answer
  • Link AB is to be made of a steel for which the ultimate normal stress is 65 ksi. Determine the cross-sectional area of AB for wh
    14·1 answer
  • Finally you will implement the full Pegasos algorithm. You will be given the same feature matrix and labels array as you were gi
    12·1 answer
  • Refrigerant 134a enters a horizontal pipe operating at steady state at 40°C, 300 kPa, and a velocity of 25 m/s. At the exit, the
    11·1 answer
  • Consider uniaxial extension of a test specimen. It has gauge length L = 22 cm (the distance between where it is clamped in the t
    6·1 answer
  • Compute the thermal efficiency for an ideal gas turbine cycle that operates with a pressure ratio of 6.75 and uses helium gas.
    12·1 answer
  • Hi. I would like to know why one side of an island can get more rain (more rain forms), while the other gets less.
    15·2 answers
  • Which type of system is being researched to deliver power to several motors to drive multiple systems in vehicles?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!