Answer:
105 km
Explanation:
The motorist was going 30 km/hr, and it took 3 hours 30 minutes. That's 3.5 hours. 3.5×30=105
Explanation:
thermal expansion ∝L = (δL/δT)÷L ----(1)
δL = L∝L + δT ----(2)
we have δL = 12.5x10⁻⁶
length l = 200mm
δT = 115°c - 15°c = 100°c
putting these values into equation 1, we have
δL = 200*12.5X10⁻⁶x100
= 0.25 MM
L₂ = L + δ L
= 200 + 0.25
L₂ = 200.25mm
12.5X10⁻⁶ *115-15 * 20
= 0.025
20 +0.025
D₂ = 20.025
as this rod undergoes free expansion at 115°c, the stress on this rod would be = 0
Answer:
88.18 W
Explanation:
The weight of the boy is given as 108 lb
Change to kg =108*0.453592= 48.988 kg = 49 kg
The slope is given as 6% , change it to degrees as
6/100 =0.06
tan⁻(0.06)= 3.43°
The boy is travelling at a constant speed up the slope = 7mi/hr
Change 7 mi/h to m/s
7*0.44704 =3.13 m/s
Formula for power P=F*v where
P=power output
F=force
v=velocity
Finding force
F=m*g*sin 3.43°
F=49*9.81*sin 3.43° =28.17
Finding the power out
P=28.17*3.13 =88.18 W
Answer: The exit temperature of the gas in deg C is
.
Explanation:
The given data is as follows.
= 1000 J/kg K, R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)
= 100 kPa,
We know that for an ideal gas the mass flow rate will be calculated as follows.
or, m =
=
= 10 kg/s
Now, according to the steady flow energy equation:
= 5 K
= 5 K + 300 K
= 305 K
= (305 K - 273 K)
=
Therefore, we can conclude that the exit temperature of the gas in deg C is
.