Question:
The question is not complete. See the complete question and the answer below.
A well that pumps at a constant rate of 0.5m3/s fully penetrates a confined aquifer of 34 m thickness. After a long period of pumping, near steady state conditions, the measured drawdowns at two observation wells 50m and 100m from the pumping well are 0.9 and 0.4 m respectively. (a) Calculate the hydraulic conductivity and transmissivity of the aquifer (b) estimate the radius of influence of the pumping well, and (c) calculate the expected drawdown in the pumping well if the radius of the well is 0.4m.
Answer:
T = 0.11029m²/sec
Radius of influence = 93.304m
expected drawdown = 3.9336m
Explanation:
See the attached file for the explanation.
Answer:
option B is correct. Fracture will definitely not occur
Explanation:
The formula for fracture toughness is given by;
K_ic = σY√πa
Where,
σ is the applied stress
Y is the dimensionless parameter
a is the crack length.
Let's make σ the subject
So,
σ = [K_ic/Y√πa]
Plugging in the relevant values;
σ = [50/(1.1√π*(0.5 x 10^(-3))]
σ = 1147 MPa
Thus, the material can withstand a stress of 1147 MPa
So, if tensile stress of 1000 MPa is applied, fracture will not occur because the material can withstand a higher stress of 1147 MPa before it fractures. So option B is correct.
Hopefully that helps you out and is this for history or science?
Answer:
The elastic modulus of the steel is 139062.5 N/in^2
Explanation:
Elastic modulus = stress ÷ strain
Load = 89,000 N
Area of square cross section of the steel bar = (0.8 in)^2 = 0.64 in^2
Stress = load/area = 89,000/0.64 = 139.0625 N/in^2
Length of steel bar = 4 in
Extension = 4×10^-3 in
Strain = extension/length = 4×10^-3/4 = 1×10^-3
Elastic modulus = 139.0625 N/in^2 ÷ 1×10^-3 = 139062.5 N/in^2
Answer:


Explanation:
= Area of section 1 = 
= Velocity of water at section 1 = 100 ft/min
= Specific volume at section 1 = 
= Density of fluid = 
= Area of section 2 = 
Mass flow rate is given by

The mass flow rate through the pipe is 
As the mass flowing through the pipe is conserved we know that the mass flow rate at section 2 will be the same as section 1

The speed at section 2 is
.