I believe 1 is growth and 2 is reproduction. Hope this helps.
The two properties which are used to define matter are that it has mass
and it takes up space. The other properties do not necessarily apply to
each matter. Such some matter can be a conductor of heat (such as metal)
and some not (such as non metals). Likewise, some matter can be buoyant
and float on liquid of density more than it but others would not on the
liquids of density less than it. In-fact not all the matters are
conductors of energy (such as heat, sound, electricity) or at-least a
very poor conductor of energy and tend to find application as
insulating agents (non conductors). So the only thing which is
necessarily true is that the matter would definitely have mass in even
their minutest form as atom and would take up some space.
Au, N, O ( give me brainliest please)
B. White Dwarf.
<h3>Explanation</h3>
The star would eventually run out of hydrogen fuel in the core. The core would shrink and heats up. As the temperature in the core increases, some of the helium in the core will undergo the triple-alpha process to produce elements such as Be, C, and O. The triple-alpha process will heat the outer layers of the star and blow them away from the core. This process will take a long time. Meanwhile, a planetary nebula will form.
As the outer layers of gas leave the core and cool down, they become no longer visible. The only thing left is the core of the star. Consider the Chandrasekhar Limit:
Chandrasekhar Limit:
.
A star with core mass smaller than the Chandrasekhar Limit will not overcome electron degeneracy and end up as a white dwarf. Most of the outer layer of the star in question here will be blown away already. The core mass of this star will be only a fraction of its
, which is much smaller than the Chandrasekhar Limit.
As the star completes the triple alpha process, its core continues to get smaller. Eventually, atoms will get so close that electrons from two nearby atoms will almost run into each other. By Pauli Exclusion Principle, that's not going to happen. Electron degeneracy will exert a strong outward force on the core. It would balance the inward gravitational pull and prevent the star from collapsing any further. The star will not go any smaller. Still, it will gain in temperature and glow on the blue end of the spectrum. It will end up as a white dwarf.