This is an ideal gas law question. It uses the ideal gas law equation, PV =nRT.
P = pressure, V = volume, n = moles, R is the constant, and T is temperature in kelvin. The temperature needs to be converted Kevin first. To convert from Celsius to Kevin, you add 273, meaning that the temp in Kevin is 403K. Then plug all the info into the equation to solve for moles.
(1.00atm)(1.280L)=n(0.0821)(403K)
n = 0.0387moles
To find molar mass, divide mass by moles.
4.03g / 0.0387moles = 104.17g/mol
104g/mol rounded to three significant digits
Explanation:
The volume of given lead nitrate solution is:
52.5 mL.
The amount of lead iodide formed is ---0.248 g.
To get the molarity of lead (II) ion follow the below-shown procedure:
The number of moles of lead iodide formed is:

0.000537 mole of lead iodide contains --- 0.000537 moles of lead (II) ion.
Thus, the number of moles are there, volume is there, and to get the molarity of lead (II) ion use the formula:

Molarity of lead iodide is --- 0.0102 M.
Answer:
69.7% is percent yield
Explanation:
Based on the reaction:
3Ca(NO3)2(aq) + 2Na3PO4(aq) → Ca3(PO4)2(s) + 6NaNO3(aq)
2 moles of Na3PO4 react producing 6 moles of NaNO3.
As 24.2 moles of Na3PO4 react, theoretical moles of NaNO3 produced are:
24.2 moles Na3PO4 * (6 moles NaNO3 / 2 moles Na3PO4) =
72.6 moles of NaNO3
As there are produced 50.6 moles of NaNO3, percent yield is:
50.6 moles NaNO3 / 72.6 moles NaNO3 =
<h3>69.7% is percent yield</h3>
The Kuiper belt is home to three officially recognized dwarf planets: Pluto, Haumea, and Makemake. Some of the Solar System's moons, such as Neptune's Triton and Saturn's Phoebe, are also thought to have originated in the region.