Answer:
The correct answer is - sulfur.
Explanation:
In the periodic table, there are 18 groups and 7 rows or periods arranged according to their atomic number or electronic configuration. In the question, it is mentioned that the desired element atomic mass is less than the atomic mass of the selenium which is 78.96, and more than oxygen which is 15.99 with 6 electron valence and present in the third row.
As it has 6 valency of electron it must be in the 16 group of the table that comprises the 6 valency and as it is located in the 3rd row it must be sulfur that also has an atomic mass between selenium and oxygen.
100 m = 0.1 km
9.58 sec = 9.58/3600 = 0.00266 hr
Speed = 0.1/0.00266= 37.6 km/hr
Can you mark it brainliest?
Amines are derivatives of
Ammonia (NH₃) in which atleast one hydrogen atom is replaced by an alkyl group. Amines are further classifies as;
Primary Amines: In primary amines the nitrogen atom is attached to two hydrogen atoms and one alkyl group.
Secondary Amines: In secondary amines the nitrogen atom is attached to two alkyl groups and one hydrogen atom.
Tertiary Amines: In tertiary amines the nitrogen atom is attached to three alkyl groups, hence it has no hydrogen atom.
Below are three isomers of tertiary amines with molecular formula
C₅H₁₃N.
Answer:
It means the chemical entity is a radical
Explanation:
When we talk of unsaturation, we are referring to the number of pi-bonds in a chemical entity. The alkane, alkene and alkyne organic family are used to as common examples to explain the term unsaturation.
While alkynes have 3 bonds, it must be understood that they have 2 pi bonds only and as such their degree of saturation is two.
In the case of an alkene, there is only one single pi bond and as such the degree of unsaturation is 1.
Now in this case, we have a fractional 0.5 degree of unsaturation alongside the 3 to make a total of 3.5. So what’s the issue here?
The fractional part shows that the chemical entity we are dealing with here is a radical. While the integer 3 shows that there are 3 pi-bonds, the half pi bond remaining tells us that there is a missing electron on one of the atoms involved in the chemical bonding and as such, the 1/2 extra degree of unsaturation tends to tell us this.
Kindly recall that a radical is a chemical entity within which we have at the least an unpaired electron.