Answer:
Compound.
Explanation:
That would be compound as it consists of a number of elements bonded together. It is inorganic not organic.
Answer: 54 atm
Explanation:
I did 67/82.5 then got 0.8121212121. I them divided 44 by 0.81212121 and got 54.1791044776
Answer:
16.6 mg
Explanation:
Step 1: Calculate the rate constant (k) for Iodine-131 decay
We know the half-life is t1/2 = 8.04 day. We can calculate the rate constant using the following expression.
k = ln2 / t1/2 = ln2 / 8.04 day = 0.0862 day⁻¹
Step 2: Calculate the mass of iodine after 8.52 days
Iodine-131 decays following first-order kinetics. Given the initial mass (I₀ = 34.7 mg) and the time elapsed (t = 8.52 day), we can calculate the mass of iodine-131 using the following expression.
ln I = ln I₀ - k × t
ln I = ln 34.7 - 0.0862 day⁻¹ × 8.52 day
I = 16.6 mg
Answer:
Explanation:
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Chemical equation:
Mg + HCl → H₂ + MgCl₂
24 g + 36.5 g = 2 g+ 95 g
60.5 g = 97 g
The reaction does not hold the law of conservation of mass, because it is not balanced.
Balanced chemical equation:
Mg + 2HCl → H₂ + MgCl₂
24 g + 73 g = 2 g+ 95 g
97 g = 97 g
this equation completely follow the law of conservation of mass.
Answer:
PART A
Explanation:
3. A cylinder of compressed gas has a pressure of 4.882 atm on one day. The next
day, the same cylinder of gas has a pressure of 4.690 atm, and its temperature is
8°C. What was the temperature on the previous day in °C? Ans: 20°C.