Answer:
Electrostatic repulsion, strong nuclear force
Explanation:
The nucleus consists of protons and neutrons. protons are positively charged while neutrons possess no charge.
Since protons are positively charged, they repel each other strongly (like charges repel). This strong repulsion of like charges makes the nucleus somewhat unstable leading to spontaneous fission of heavy nuclei.
However, an opposing force called nuclear attractive force tends to hold the nucleons together. This attraction occurs when two nucleons are bonded by a particle called a π meson.
Hence, the two forces that act in the nucleus to create a 'nuclear tug-of-war' are electrostatic repulsion and a strong nuclear force.
The liquid to solid process using the particle theory is as below
- The process that involve change of liquid to solid is known as Freezing
- It involve change from a high energy state to lower energy
- The constant temperature at which a liquid change to solid by giving out heat energy is called freezing point of the liquid
- when liquid are cooled the thermal energy of particles decrease.
- The cohesive forces between the particles strengthen to such extent that particles can have relative motion with each other and they occupy the fixed position, thus liquid is converted to solid
Answer:
O lowering the temperature of the system
3) CH₃-COOH + NH₃ → CH₃-COO⁻NH₄⁺
4) 2 FeCl₃ + 3 Ag₂SO₃ → Fe₂(SO₃)₃ + 6 AgCl
5) 2 Al + 3 NiCl₂ → 2 AlCl₃ + 3 Ni
6) 4 LiCl + Pb(NO₂)₄ → 4 LiNO₂ + PbCl₄
7) 3 H₂SO₄ + 2 Al(OH)₃ → Al₂(SO₄)₃ + 6 H₂O
8) Cd(NO₃)₂ + Na₂S → CdS + 2 NaNO₃
9) Cr₂(SO₄)₃ + 3 (NH₄)₂CO₃ → Cr₂(CO₃)₃ + 3 (NH₄)₂SO₄