The mechanical energy of the girl will be conserved because the system is isolated and the initial potential energy will be equal to final kinetic energy.
<h3>
What is the law of conservation of energy?</h3>
The law of conservation of energy states that energy can neither be created nor destroyed but can be transformed from one form to another.
The change in the potential energy of the launched from a height into the pool without friction from the given height h is calculated by applying the following kinematic equation.
ΔP.E = ΔK.E
where;
- ΔP.E is change in potential energy of the child
- ΔK.E is change in the kinetic energy of the child
mghf - mghi = ¹/₂mv² - ¹/₂mu²
where;
- m is the mass of the girl
- g is acceleration due to gravity
- hi is the initial height of the girl
- hf is the final height when she is launched into the pool
- u is the initial velocity
- v is the final velocity of the girl
Thus, for every closed or isolated system such as this case, mechanical energy is always conserved because the initial potential energy of the girl will be converted into her final kinetic energy.
Learn more about conservation of mechanical energy here: brainly.com/question/332163
#SPJ1
football hemets have pads that are filled with air and thick foam so when they are hit the foam asorbs the hit and the air keeps the hard outer shell of the helmet from hiting the players head
Answer: earth
Explanation: isn’t earth the only plant with LIQUID water?
Answer:
The radiation pressure of the light is 3.33 x 10⁻⁶ Pa.
Explanation:
Given;
intensity of light, I = 1 kW/m²
The radiation pressure of light is given as;

I kW = 1000 J/s
The energy flux density = 1000 J/m².s
The speed of light = 3 x 10⁸ m/s
Thus, the radiation pressure of the light is calculated as;

Therefore, the radiation pressure of the light is 3.33 x 10⁻⁶ Pa.
Explanation:
There are five equations of motion:
v = at + v₀
Δx = v₀ t + ½ at²
Δx = ½ (v + v₀)t
v² = v₀² + 2aΔx
Δx = vt − ½ at²
Δx is the displacement
v₀ is the initial velocity
v is the final velocity
a is the acceleration
t is time