<span>a) 7.9x10^9
b) 1.5x10^9
c) 3.9x10^4
To determine what percentage of an isotope remains after a given length of time, you can use the formula
p = 2^(-x)
where
p = percentage remaining
x = number of half lives expired.
The number of half lives expired is simply
x = t/h
where
x = number of half lives expired
t = time spent
h = length of half life.
So the overall formula becomes
p = 2^(-t/h)
And since we're starting with 1.1x10^10 atoms, we can simply multiply that by the percentage. So, the answers rounding to 2 significant figures are:
a) 1.1x10^10 * 2^(-5/10.5) = 1.1x10^10 * 0.718873349 = 7.9x10^9
b) 1.1x10^10 * 2^(-30/10.5) = 1.1x10^10 * 0.138011189 = 1.5x10^9
c) 1.1x10^10 * 2^(-190/10.5) = 1.1x10^10 * 3.57101x10^-6 = 3.9x10^4</span>
The answer is (4) at the cathode, where reduction occurs. The Na+ gains one electron and become Na(l). So the reaction occurs at cathode and is reduction reaction.
If the reaction is represented by:
PCl₃ + Cl₂ <-> PCl₅ (exothermic)
the mole fraction of chlorine in the equilibrium mixture will change according to the following:
Decrease the volume: decrease
Increase the temperature: increase
Increase the volume: increase
Decrease the temperature: decrease
Physical changes are when things get changed without altering chemical consistencies, which is melting solid butter into liquid one, or boiling water. Chemical changes are things such as caramelizing sugar when making sweets, or when carbon dioxide is created and released when baking bread.