In order to find the molarity of the solution, we first require the moles of acetic acid added. For this,we need the mass which is:
Mass = volume * density
Mass = 50 * 1.05
Mass = 52.5 grams
Moles = mass / molecular weight
Moles = 52.5 / 60.05
Moles = 0.874 mol
Next, we know that the molarity of a solution is:
Molarity = moles / liter
Molarity = 0.874 / 0.5
Molarity = 1.75 M
If more reactant is added, the equation will shift to the right in order to make more product (which will increase the products)
Answer:
bottom right top left fig
Answer:
The correct answer is "Secondary active transport".
Explanation:
Secondary active transport is a form of across the membrane transport that involves a transporter protein catalyzing the movement of an ion down its electrochemical gradient to allow the movement of another molecule or ion uphill to its concentration/electrochemical gradient. In this example, the transporter protein (antiporter), move 3 Na⁺ into the cell in exchange for one Ca⁺⁺ leaving the cell. The 3 Na⁺ are the ions moved down its electrochemical gradient and the one Ca⁺⁺ is the ion moved uphill its electrochemical gradient, because Na+ and Ca⁺⁺are more concentrated in the solution than inside the cell. Therefore, this scenario is an example of secondary active transport.
Answer: F. Electron pair acceptor
Explanation:
A Lewis acid can be properly defined as any substance such as H+ (hygrogen ion) that can accept a pair of electron.
While a Lewis base is any substance such as (OH-) that can donate a pair of electron.
In the neutralization reaction between an acid ( H+ ) and a base (OH-). Hydrogen ion (H+ ) is the Lewis acid because it accepts an electron pair from (OH-).
Other examples of Lewis acid are; Mg2+, K+