Answer: -3.49 m/s (to the south)
Explanation:
This problem can be solved by the Conservation of Momentum principle which establishes the initial momentum
must be equal to the final momentum
, and taking into account this is aninelastic collision:
Before the collision:
(1)
After the collision:
(2)
Where:
is the mass of the car
is the velocity of the car, directed to the north
is the mass of the truck
is the velocity of the truck, directed to the south
is the final velocity of both the car and the truck
(3)
(4)
Isolating
:
(5)
(6)
Finally:
The negative sign indicates the direction of the velocity is to the south
Answer:
at point A the ball possess pontetial energy , point B kinetic energy then point C pontetial energy
- Angle (θ) = 60°
- Force (F) = 20 N
- Distance (s) = 200 m
- Therefore, work done
- = Fs Cos θ
- = (20 × 200 × Cos 60°) J
- = (20 × 200 × 1/2) J
- = (20 × 100) J
- = 2000 J
<u>Answer</u><u>:</u>
<u>2</u><u>0</u><u>0</u><u>0</u><u> </u><u>J</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.
Answer:
354 m/s
Explanation:
For the second overtune (Third harmonic) of an open pipe,
λ = 2L/3................................ Equation 1
Where L = Length of the open pipe, λ = Wave length.
Given: L = 1.75 m.
Substitute into equation 1
λ = 2(1.75)/3
λ = 1.17 m.
From the question,
V = λf.......................... Equation 2
V = speed of sound in the room, f = frequency
Given: f = 303 Hz.
Substitute into equation 2
V = 1.17(303)
V = 353.5
V ≈ 354 m/s
Hence the right answer is 354 m/s
Neither of those questions makes sense, and I believe that you should not waste your time worrying about them.
#61 gives you a lot of information about a ball, and then asks a question about a glove.
#62 gives a mysterious equation, doesn't tell you what either of the variables represents, and then asks for a quantity without ever telling us how that quantity is related to the equation.
Personally, my response to both questions would be "Insufficient information given".