Answer:
Chloroform= limiting reactant
0.209mol of CCl4 is formed
And 32.186g of CCl4 is formed
Explanation:
The equation of reaction
CHCl3 + Cl2= CCl4 + HCl
From the equation 1 mol of
CHCl3 reacts with 1mol Cl2 to yield 1mol of CCl4
From the question
25g of CHCl3 really with Cl2
Molar mass of CHCl3= 119.5
Molar mass of Cl2 = 71
Hence moles of CHCl3= 25/119.5 = 0.209mol
Moles of Cl2 = 25/71 = 0.352mol
Hence CHCl3 is the limiting reactant
Since 1 mole of CHCl3 gave 1mol of CCl4
It implies that 0.209moles of CHCl3 will also give 0.209mol of CCl4
Mass of CCl4 formed = moles× molar mass= 0.209×154= 32.186g
Answer:
Ni
Explanation:
An active metal is a highly reactive metal. Active metals are found high up in the activity series.
Active metals react with other metals that are lower than them in the activity thereby displacing the lower metals from a solution of their salts. This is what may have happened in the other two reactions.
Ni is the most active metal listed in the question since it can react a compounds with Pb(NO3)2(aq) to liberate Pb metal.
The oxidation state of Chromium chloride (III) is +3
How can we find the answer?
First of all write down what you know about the molecule:
1: The molecule hasn't got an electric charge (is not an ione), this means that either positive and negative charges of its atoms are balanced (we have the same number of positve and negative charges)
2: Since it's a salt, where the metal is chromium and the non metal is the alogen Chlorine, we know that the negative charge belogns to the non metal element because of its elettronegativity, therefore the positive charge belongs to the metale element (chromium).
3: when chlorin forms binary salts its oxidation state is always -1 (you can find out this info in a periodic table)
In <span>CrC<span>l3</span></span> we have 3 chlorine atoms where each of them carrys 1 negative charge, so the total amount of negative charges is -3
Since the charges are balanced, the question is: Which is the positive charge that Chromium must carry in order to balance 3 negative charges?
The answer comes out to +3
The wavelength of a sound wave moving at 340 m/s and with a frequency of 256 Hz is calculated using the the below formula
wavelength = speed of the wave/frequency
speed of the wave = 340 m/s
frequency = 256 Hz
wavelength is therefore = 340/256 = 1.32 m