Hey there!
Cu(CN)₂
Find the molar mass.
Cu: 1 x 63.546 = 63.546
C: 2 x 12.01 = 24.02
N: 2 x 14.07 = 28.14
-----------------------------------
115.706 grams
The mass of one mole of Cu(CN)₂ is 115.706 grams.
We have 4 moles.
115.706 x 4 = 463
4.00 moles of Cu(CN)₂ has a mass of 463 grams.
Hope this helps!
I am guessing that your solutions of HCl and of NaOH have approximately the same concentrations. Then the equivalence point will occur at pH 7 near 25 mL NaOH.
The steps are already in the correct order.
1. Record the pH when you have added 0 mL of NaOH to your beaker containing 25 mL of HCl and 25 mL of deionized water.
2. Record the pH of your partially neutralized HCl solution when you have added 5.00 mL of NaOH from the buret.
3. Record the pH of your partially neutralized HCl solution when you have added 10.00 mL, 15.00 mL and 20.00 mL of NaOH.
4. Record the NaOH of your partially neutralized HCl solution when you have added 21.00 mL, 22.00 mL, 23.00 mL and 24.00 mL of NaOH.
5. Add NaOH one drop at a time until you reach a pH of 7.00, then record the volume of NaOH added from the buret ( at about 25 mL).
6. Record the pH of your basic HCl-NaOH solution when you have added 26.00 mL, 27.00 mL, 28.00 mL, 29.00 mL and 30.00 mL of NaOH.
7. Record the pH of your basic HCl-NaOH solution when you have added 35.00 mL, 40.00 mL, 45.00 mL and 50.00 mL of NaOH from your 50mL buret.
The slight positive charges on the hydrogen atoms in water molecules attract the slight negative charges on the oxygen atoms of the other water molecules
Answer:
How does the energy required to remove an electron from an atom change as you move left to right in Period 4 from potassium through iron? ... A greater nuclear charge pulls the electrons closer to the nucleus, decreasing the atomic radius.
Its b Fe(s) <span> Fe</span>2+(aq) + 2e– <span><span> </span>E</span><span> = </span><span>+0.44 V</span>