Answer:
Bottom of the circle.
Explanation:
At the top of the circle the tension and the weight contribute on being the centripetal force, at the middle of the circle only the tension contributes on being the centripetal force (the weight being perpendicular to it), while <u>at the bottom</u> of the circle the tension contributes on being the centripetal force (as always) <em>but the weight against to it</em>, so here is where the tension must be greater to allow the same centripetal force as the other cases, thus here is where the string will break.
Answer:
You can describe the<u> motion </u>of an object by saying it is moving in a straight line or is curved around another object. You can also describe where an object is by its <u> position </u> in relation to another object. The second object acts as a<u> reference</u> point. When an object changes position, you know it has motion. Motion can also be described by finding an object's <u>speed </u>or how fast or slow it moves in a certain amount of time. In addition, you can describe the object's speed AND direction together. This is called <u>velocity</u>
Explanation:
In the given answer-
<u>Motion</u> is defined as - the change in the movement or position of any object or body.
<u>Position</u> is said to be a place or somewhere or a location where any object or body is particularly placed/located or put on.
<u>Reference poin</u>t is a fixed point with regards to which any object or body changes its position. It is also called reference origin.
<u>Speed</u> is defined as the rate of any object covering certain distances. It is a scaler quantity (quantity which depends upon only magnitude).
<u>Velocity</u> is defined as the rate of speed per unit time. It is a vector quantity (quantity depending upon both magnitude and direction ).
Different densities have to have a reason - different pressure and/or humidity etc. If there is a different pressure, there is a mechanical force that preserves the pressure difference: think about the cyclones that have a lower pressure in the center. The cyclones rotate in the right direction and the cyclone may be preserved by the Coriolis force.
If the two air masses differ by humidity, the mixing will almost always lead to precipitation - which includes a phase transition for water etc. It's because the vapor from the more humid air mass gets condensed under the conditions of the other. You get some rain. In general, intense precipitation, thunderstorms, and other visible isolated weather events are linked to weather fronts.
At any rate, a mixing of two air masses is a nontrivial, violent process in general. That's why the boundary is called a "front". In the military jargon, a front is the contested frontier of a conflict. So your idea that the air masses could mix quickly and peacefully - whatever you exactly mean quantitatively - either neglects the inertia of the air, a relatively low diffusion coefficient, a low thermal conductivity, and/or high latent heat of water vapor. A front is something that didn't disappear within minutes so pretty much tautologically, there must be forces that make such a quick disappearance impossible.
Here are the correct answers that would complete the given statement above. The vector quantity and the vector arrow are used to calculate magnitude and direction of a resultant vector. Vector quantity has both magnitude and direction, whereas vector arrow represents<span> the magnitude of a quantity and the direction represents the direction of that quantity. </span>Hope this is the answer that you are looking for.
Answer:
Breh seriously. Ugh fine.
1.B
2.D
3.C
4.C
5.D,A and B
6.A,C and D