Antelope: uniform motion => V = d/t => d = Vt = 7m/s * t
Lion: uniformly accelerated motion, with initial velocity = 0 => d = [1/2]a*t^2 = [1/2]*[5m/s^2]*t^2
7*t = 2.5*t^2=> 2.5t^2 - 7t =0 => t(2.5t - 7) = 0
2.5t - 7 = 0 => t = 7/2.5 = 2.8 m/s^2
the benefit of direct contact, through a survey or interview
Answer:
find possible answers to problems
Explanation:
Science can be defined as a branch of intellectual and practical study which systematically observe a body of fact in relation to the structure and behavior of non-living and living organisms (animals, plants and humans) in the natural world through experiments.
Science is applied to many fields in the world such as medicine, information technology, cybersecurity, engineering, environmental etc.
Basically, knowing how to apply science simply means a scientist understands the appropriate method or technique to be used in the application of a technology such as when solving a problem.
Creativity implies being able to use an idea to proffer solutions to a problem in an intelligent manner.
Hence, a scientist should be creative in order to find possible answers to problems.
As per initial given conditions first we will find the initial potential energy of the feather






now we know that few amount of its initial energy is lost in form of frictional energy loss
so remaining energy will be less than the initial potential energy
So final answer would be
<u><em>A. KE < 0.0196 J</em></u>
Answer:
Vrms = 291 m/s
Explanation:
The root mean square velocity or vrms is the square root of the average square velocity and is. vrms=√3RTM. Where M is equal to the molar mass of the molecule in kg/mol.
Temperature = 365 K
Root mean square velocity = ?
molar mass of oxygen = 16 g/mol.
But xygen gas (O2) is comprised of two oxygen atoms bonded together. Therefore:
molar mass of O2 = 2 x 16
molar mass of O2 = 32 g/mol
Convert this to kg/mol:
molar mass of O2 = 32 g/mol x 1 kg/1000 g
molar mass of O2 = 3.2 x 10-2 kg/mol
Molar mass of Oxygen = 3.2 x 10-2 kg/mol
Vrms = √[3(8.3145 (kg·m2/sec2)/K·mol)(365 K)/3.2 x 10-2 kg/mol]
Vrms = 291 m/s