To solve this problem it is necessary to apply the concepts related to Normal Force, frictional force, kinematic equations of motion and Newton's second law.
From the kinematic equations of motion we know that the relationship of acceleration, velocity and distance is given by

Where,
Final velocity
Initial Velocity
a = Acceleration
x = Displacement
Acceleration can be expressed in terms of the drag coefficient by means of
Frictional Force
Force by Newton's second Law
Where,
m = mass
a= acceleration
Kinetic frictional coefficient
g = Gravity
Equating both equation we have that



Therefore,


Re-arrange to find x,

The distance traveled by the car depends on the coefficient of kinetic friction, acceleration due to gravity and initial velocity, therefore the three cars will stop at the same distance.
Answer:
21 m
Explanation:
The motion of the frog is a uniform motion (constant speed), therefore we can find the distance travelled by using

where
d is the distance covered
v is the speed
t is the time
The frog in this problem has a speed of
v = 2.1 m/s
and therefore, after t = 10 s, the distance it covered is

The answer I found was parabola?
If the pressure above a solution containing a gas solute is reduced, the limit of the gas's solubility will decrease.
Answer:
Push -repulsion
Pull - attraction
Explanation:
When two magnets are brought together, a push happens when a force of repulsion is experienced where the magnets move away from each other. This means their polarity is the same and this will cause the magnet to push away from each other.
When two magnets are brought together , a pull happens when a force of attraction is experienced where the magnets move close to each other. This means their polarity is different and thus causes the magnets to pull closer to each other.