Answer:
Strong acids are assumed 100% dissociated in water- True
As a solution becomes more basic, the pOH of the solution increases- false
The conjugate base of a weak acid is a strong base- true
The Ka equilibrium constant always refers to the reaction of an acid with water to produce the conjugate base of the acid and the hydronium ion- True
As the Kb value for a base increases, base strength increases- true
The weaker the acid, the stronger the conjugate base- true
Explanation:
An acid is regarded as a strong acid if it attains 100% or complete dissociation in water.
The pOH decreases as a solution becomes more basic (as OH^- concentration increases).
Ka refers to the dissociation of an acid HA into H3O^+ and A^-.
The greater the base dissociation constant, the greater the base strength.
The weaker an acid is, the stronger , its conjugate base will be.
Choice 2 possibly, not positive
Answer:
801 g
Explanation:
From the question given above, the following data were obtained:
Number of mole of Ba₃(PO₄)₂ = 1.33 moles
Mass of Ba₃(PO₄)₂ =?
Next, we shall determine the molar mass of Ba₃(PO₄)₂. This can be obtained as follow:
Molar mass of Ba₃(PO₄)₂ = (137.3×3) + 2[31 + (4×16)]
= 411.9 + 2[31 + 64]
= 411.9 + 2[95]
= 411.9 + 190
Molar mass of Ba₃(PO₄)₂ = 601.9 g/mol
Finally, we shall determine the mass of Ba₃(PO₄)₂. This can be obtained as follow:
Number of mole of Ba₃(PO₄)₂ = 1.33 moles
Molar mass of Ba₃(PO₄)₂ = 601.9 g/mol
Mass of Ba₃(PO₄)₂ =?
Mole = mass /Molar mass
1.33 = Mass of Ba₃(PO₄)₂ / 601.9
Cross multiply
Mass of Ba₃(PO₄)₂ = 1.33 × 601.9
Mass of Ba₃(PO₄)₂ = 801 g
Answer:
You can divide the mass by the volume to calculate the density of the metal
Explanation:
Answer : Option C) An induced dipole will be produced in the molecule on the right.
Explanation : As per the given information there is a polar molecule which is placed on the left side which has partial positive charge at one end and on other end has partial negative charge which shows that it has a dipole in it. It tries to induce the non-polar molecule which is at right side. So, there will be an induce dipole interaction between both when they are placed closer to each other.