Answer:
The new equilibrium total pressure will be increased to one-half to initial total pressure.
Explanation:
From the information given :
The equation of the reaction can be represented as;

From above equation:
2 moles of sulphur dioxide reacts with 1 mole of oxygen (i.e 2 moles +1 mole =3 moles ) to give 2 moles of sulphur trioxide
So; suppose the volume of this system is compressed to one-half its initial volume and then equilibrium is reestablished.
So if this process takes place ; the equilibrium will definitely shift to the side with fewer moles , thus the equilibrium will shift to the right. As such; there is increase in pressure.
Let the total pressure at the initial equilibrium be 
and the total pressure at the final equilibrium be 
According to Boyle's Law; Boyle's Law states that the pressure of a fixed mass of gas is inversely proportional to the volume, provided the temperature remains constant.
Thus;
P ∝ 1/V
P = K/V
PV = K
where K = constant
So;
PV = constant
Hence;

From the foregoing; since the volume is decreased to one- half to initial Volume; then ,

also;
Thus ;



Dividing both sides by 


From ;




Thus; The new equilibrium total pressure will be increased to one-half to initial total pressure.
Explanation:
Use the density formula to determine the volume of the piece of metal.
density
=
mass
volume
Rearrange the equation to isolate volume.
volume
=
mass
density
volume
=
147
g
7.00
g
mL
=
21.0 mL
The final volume in the cylinder after adding the piece of metal is
20.0 mL
+
21.0 mL
=
41.0 mL
Hello! I can help you with this. First, convert them into it’s written out standard form. 10^4 is 10,000. 10,00 * 1.26 is 12,600. 10,000 * 2.5 is 25,000. 12,600 + 25,000 = 37,600 or 3.76 * 10^4 in scientific notation. The answer in scientific notation is 3.76 * 10^4.
Jinx kxknxbxbxbjxj dbdbcj
When we are at STP conditions, we can use this conversion: 1 mol= 22.4 L
0.500 mol C₃H₈ (22.4 L/ 1 mol)= 11.2 L