Answer:
tan 249 = 2.61
tan 249 = tan (249 - 180) = tan 69 = 2.61
To be able to determine the original speed of the car, we use kinematic equations to relate the acceleration, distance and the original speed of the car moving.
First, we manipulate the one of the kinematic equations
v^2 = v0^2 + 2 (a) (x) where v = 0 since the car stopped
Writing the equation in such a way that the initial velocity or v0 is written on one side of the equation,
<span>we get v0 = sqrt (2(a)(x))
Substituting the known values,
v0 = sqrt(2(3.50)(30.0))
v0 = 14.49 m/s
</span>
Therefore, before stopping the car the original speed of the car would be 14.49 m/s
Answer:
5
Explanation:
The d subshell has 5 orbitals, each capable of holding a maximum of two electrons. Hund's rule tells us that every orbital in a sub-level must first be singly occupied by electrons before any orbital is doubly occupied. Therefore five electrons will fill the five orbitals within the d subshell.
Darwin's atomic theory which states that atoms do not emit or absorb energy so far as they remain in allowable orbits or ground states.It also states that a spectra is produced when an electron moves to a lower energy level thereby releasing energy.
Answer:
1.40625 kg-m^2
Explanation:
Supposing we have to calculate rotational moment of inertia
Given:
Mass of the ball m= 2.50 kg
Length of the rod, L= 0.78 m
The system rotates in a horizontal circle about the other end of the rod
The constant angular velocity of the system, ω= 5010 rev/min
The rotational inertia of system is equal to rotational inertia of the the ball about other end of the rod because the rod is mass-less

=1.40625 kg-m^2
m= mass of the ball and L= length of the ball