A nuetron is the lightest subatomic particle
Answer:
(a). The frequency of this standing wave is 0.782 kHz.
(b). The frequency of the fundamental standing wave in the air is 1.563 kHz.
Explanation:
Given that,
Length of tube = 11.0 cm
(a). We need to calculate the frequency of this standing wave
Using formula of fundamental frequency

Put the value into the formula



(b). If the test tube is half filled with water
When the tube is half filled the effective length of the tube is halved
We need to calculate the frequency
Using formula of fundamental frequency of the fundamental standing wave in the air

Put the value into the formula



Hence, (a). The frequency of this standing wave is 0.782 kHz.
(b). The frequency of the fundamental standing wave in the air is 1.563 kHz.
Answer:

Explanation:
First displacement of the particle is given as
= 11 m at 82 degree with positive X axis
so we can say


resultant displacement of the particle after second displacement is given as
r = 8.7 m at 135 degree with positive X axis
so we can say


now we know that

now we have

so we will have


so angle of the second displacement is given as



Answer:
Explanation:
Mass of ice m = 500g = .5 kg
Heat required to raise the temperature of ice by 10 degree
= mass of ice x specific heat of ice x change in temperature
= .5 x 2093 x 10 J
10465 J
Heat required to melt the ice
= mass of ice x latent heat
0.5 x 334 x 10³ J
167000 J
Heat required to raise its temperature to 18 degree
= mass x specific heat of water x rise in temperature
= .5 x 4182 x 18
=37638 J
Total heat
=10465 +167000+ 37638
=215103 J
Answer:
3.69 m/s
Explanation:
Forces :
mgsin Θ - mumgcosΘ = ma
g x sinΘ - mu x g x cosΘ = a
9.8 x sin 21 - 0.53 x 9.8 x cos 21 = a
a = -1.337 m/s²
so you have final velocity = 0 m/s
initial velocity = ? m/s
Given d = 5.1 m
By kinematics
vf² = vo² + 2ad
0 = vo² + 2 x -1.337*5.1
vo = 3.69 m/s