Answer:
At higher temperatures, particles move faster and collide more, increasing solubility rates.
Agitation increases solubility rates as well, by bringing fresh solvent into contact with the undissolved solute
The smaller the particle size, the higher (faster) solubility rate. Vice versa, the bigger the particle size, the lower (slower) solubility rate.
Explanation:
Answer:
a) Ag(NH₃)₂⁺, Cl⁻.
b) NH₃.
c) AgCl.
Explanation:
Based on LeChatelier's law, a system in chemistry can change responding to a disturbance of concentration, temperature, etc. in order to restore a new state.
In the reaction:
AgCl(s) + 2NH₃(aq) ⇌ Ag(NH₃)₂⁺(aq) + Cl⁻(aq)
When reactants are added, the system will produce more products restoring the equilibrium and vice versa. A reactant in solid state doesn't take part in the equilibrium, thus:
a) Ag(NH₃)₂⁺, Cl⁻. The addition of products will shift the equilibrium to the left
b) NH₃. The addition of reactant will shift the equilibrium to the right.
c) As AgCl is in solid phase, will not shift the equilibrium in either direction.
The First Law of Thermodynamics states that heat is a form of energy, and thermodynamic processes are therefore subject to the principle of conservation of energy. This means that heat energy cannot be created or destroyed.
Answer:
Option C. +150KJ
Explanation:
Data obtained from the question include:
Heat of reactant (Hr) = 200KJ
Heat of product (Hp) = 350KJ
Change in enthalphy (ΔH) =..?
The enthalphy of the reaction can be obtained as follow:
Change in enthalphy (ΔH) = Heat of reactant (Hp) – Heat of reactant (Hr)
ΔH = Hp – Hr
ΔH = 350 – 200
ΔH = +150KJ
Therefore, the enthalphy for the reaction above is +150KJ
It might be c, because he came up with the plum pudding model. or it might be that atoms of the same element are identical, but that's not true cuz ions are different and isotopes are different.