Answer:
The heat that was used to melt the 15.0 grams of ice at 0°C is 4,950 Joules
Explanation:
The mass of ice in the beaker = 15.0 grams
The initial temperature of the ice = 0°C
The final temperature of the ice = 0°C
The latent heat of fusion of ice = 330 J/g
The heat required to melt a given mass of ice = The mass of the ice to be melted × The latent heat of fusion of ice
Therefore, the heat, Q, required to melt 15.0 g of ice = 15.0 g × 330 J/g = 4,950 J
The heat that was used to melt the 15.0 grams of ice = 4,950 Joules.
Answer:

Explanation:
k stand for equilibrium constants in terms of reaction
The higher the value of an equilibrium constant the faster the equilibrium reaction comes to completion.
Consider the example below:
⇄
where

For a faster reaction the numerator i.e. the right hand side of the equation have to be higher than the left hand side (the denominator). therefore the higher the numerator, the higher the value of the equilibrium constant and the faster the reaction get to completion thus option c is correct.
Mostly about what it can do with its trunk! also about how strong it is or evan how long! love to help!
contact me if you need more info
-luna
Answer:
Dominant genes are always represented by a capital letter which in this case is the letter B whereas recessive genes will be represented by a lower case letter like b.
You only need one copy of a dominant gene or allele to inherit it. A dominant allele is always expressed even if only one copy is present.
But you need two copies of genes or alleles to inherit the recessive gene. There also can't be a dominant allele of the gene if you are to inherit this.
Allele - Different forms of a gene
16. Metals have a structure containing delocalised electrons, meaning they can conduct electricity as they allow movement of charged particles. 17. groups of elements (columns) react in the same way, but depending on whether they group tends to lose or gain electrons the reactivity can increase or decrease when going down the group (column) 18. O2 is non polar as there is no difference in electronegativity between two oxygen atoms (they are the same). CO2 is non polar, it has polar bonds (O is more electronegative than C) but as it is symmetrical there is no polarity in the molecule. 19. Water is polar as the lone pairs on the O repel the delta + H groups so that the HOH angle is around 109deg, so water molecules create polar interactions which each other. These polar interactions require energy to break, so water has a higher boiling point than other small molecules which don't have these interactions. 20. The metal used is tough, and the horseshoe is usually heated meaning the metal will act slightly more viscous (closer to liquid). This means it can be moulded better, and then when its cooled it will become stronger and more brittle. 21. Well N2 + H2 --> NH3, by the haber process, so nitrogen:hydrogen ratio is 1:3. But what they want you to say is that nitrogen has 5 electrons and hydrogen has 1 and you're aiming for eight so you need N (5) + 3 Hs (3*1=3) to make NH3 (8 electrons around N) 22. Na and H, as this reduces the valence shell number and therefore reduces the energy state of the atom 23. Ar, its very stable as its octet is filled, meaning to fill or empty its octet it would have to lose or gain 8 electrons which is extremely hard 24. Oxygen, as it would accept the electrons donated by the 2 Na atoms, and fill its octet while emptying both the Na's 25. N2 and O2 are both covalently bonded, Oxygen forms a double bond to itself like this O=O and nitrogen forms a triple bond to itself like this N<span>≡N </span><span>Hope that helps :) and make sure you learn this, it'll come back and bite you when you need it for a test</span>