Answer:
A molecule is a group of two or more atoms that are held together by chemical bonds.
Explanation:
Answer:
A) [H3PO4] will increase, [KH2PO4] will decrease, and pH will slightly decrease.
Explanation:
A buffer is a solution which resists changes to its pH when a small amount of acid or base is added to it.
Buffers consist of a weak acid (HA) and its conjugate base (A–) or a weak base and its conjugate acid. Weak acids and bases do not completely dissociate in water, and instead exist in solution as an equilibrium of dissociated and undissociated species. When a small quantity of a strong acid is added to a buffer solution, the conjugate base, A-, reacts with the hydrogen ions from the added acid to form the weak acid and a salt thereby removing the extra hydrogen ions from the solution and keeping the pH of the solution fairly constant. On the other hand, if a small quantity of a strong base is added to the buffer solution, the weak acid dissociates further to release hydrogen ions which then react with the hydroxide ions of the added base to form water and the conjugate base.
For example, if a small amount of strong acid is added to a buffer solution that is 0.700 M H3PO4 and 0.700 M KH2PO4, the following reaction is obtained:
KH₂PO₄ + H+ ----> K+ + H₃PO₄
Therefore, [H₃PO₄] will increase, [KH₂PO₄] will decrease, and pH will slightly decrease.:
Answer: There are C - C bonds and C - H bonds.
trust me! I took a test with this question and got 100! :)
0.24 moles of oxygen must be placed in a 3.00 L container to exert a pressure of 2.00 atm at 25.0°C.
The variables given are Pressure, volume and temperature.
Explanation:
Given:
P = 2 atm
V = 3 litres
T = 25 degrees or 298.15 K by using the formula 25 + 273.17 = K
R = 0.082057 L atm/ mole K
n (number of moles) = ?
The equation used is of Ideal Gas law:
PV = nRT
n =
Putting the values given for oxygen gas in the Ideal gas equation, we get
n =
= 0.24
Thus, from the calculation using Ideal Gas law it is found that 0.24 moles of oxygen must be placed in a container.
Ideal gas law equation is used as it tells the relation between temperature, pressure and volume of the gas.