From the question, The kinetic energy of the fired arrow is equal to the work done by the bale of hale in stopping the arrow.
We make use of the following formula
mv²/2 = F'd................... Equation 1
Where
- m = mass of the arrow
- v = velocity of the arrow
- F' = average stopping force acting on the arrow
- d = distance of penetration
Make F' the subject of the equation
F' = mv²/2d.................. Equation 2
From the question,
Given:
- m = 20 g = 0.02 kg
- v = 60 m/s
- d = 40 cm = 0.4 m
Substitute these values into equation 2
Hence, The average stopping force acting on the arrow is 90 N
Learn more about average stooping force here: brainly.com/question/13370981
Answer
Wavelength= 30*20^8/30=10^7m
Explanation:
Velocity = frequency *wavelength
We're frequency=30HZ
Velocity of light= 3*10^8m/s
Wavelength= 30*20^8/30=10^7m
Explanation:
Answer:Negatively charged particle called Free Electrons
Explanation:
Current is the flow of charged particles called Free electrons. Electrons are free to move from one atom to another and we call them a sea of de-localized electrons. In absence of any externally applied emf, these electrons are randomly moving but with the onset of emf, these electrons flow in a particular direction.
Answer:
Dr = 263 10⁻⁶ m
Explanation:
The diffraction pattern for constructive interference is described by
a sin θ = m λ
in this it indicates that the order of diffraction is m = 1
Let's use a direct proportion rule to find the separation of two slits. If there are 600 lines in 1 me, what is the distance between 2 slits
a = 2 lines 1/600
a = 2/600
a = 3.33 10⁻³ mm = 3.33 10⁻⁴ cm
let's use trigonometry
tan θ = y / L
as the measured angles are small
tan θ = sin θ / cos θ sin θ
sin θ = y / L
we substitute
a y/L = λ
y = λ L / a
for λ = 400 10-9 m
I = 400 10⁻⁹ 2.9 / 3.33 10⁻³
i = 346.89 10⁻⁶ m
f
or λ = 700 nm
y_f = 700 10⁻⁻⁹ 2.9 / 3.33 10⁻³
y_f = 609.609 10⁻⁶ m
the separation of this spectrum
Δr = v_f - i
Dr = (609.609 - 346) 10 ⁻⁶
Dr = 263 10⁻⁶ m
Answer:
2.68 hours
Explanation:
A.) Suppose the wind blows out from the west (with the air moving east). The pilot should then head her plane to northwest direction to move directly north.
B.) Given that plane flies at a speed of 102 km/h in still air. And the wind blows out from the west (with the air moving east) at a speed of 46 km/h.
The plan resultant speed can be calculated by using pythagorean theorem.
Resultant Speed = Sqrt( 102^2 + 46^2 )
Resultant Speed = Sqrt( 12520)
Resultant speed = 111.89 km/h
From the definition of speed,
Speed = distance/time
Where distance = 300 km
Substitute the resultant speed and the distance into the formula.
111.89 = 300/time
Time = 300/111.89
Time = 2.68 hours
Therefore, it take her 2.68 hours to reach a point 300 km directly north of her srarting point