Answer:
Explanation:
Given
length of wire 
change in length 
mass of wire 
Young's modulus for silver 
load on wire 

change in length is given by

Where A=area of cross-section




also wire is the shape of cylinder so cross-section is given by





Answer:
F = 9.675Hz
Explanation:
pls for certain reasons let us make
- wavelength = $
- frequency = F
- V = velocity
3 loops : 6$/4 = L
6$/4 = 2
$ = 4/3 = 1.333
V = F x $
F = V/$
F = 12.9/1.333 = 9.675Hz
F = 9.675Hz
FALSE <span>Only electromagnetic </span>waves<span> can </span>travel through a vacuum<span>; mechanical </span>waves<span> such as sound </span>waves<span> require a particle-interaction to transport their energy. There are no particles in a </span>vacuum<span>. </span>Waves<span> are either </span>longitudinal<span> or transverse.
</span>Hoped i helped :):)
First, calculate for the distance between the given points A and B by using the equation,
<span> D = sqrt ((x2 – x1)2 + (y2 – y1)2)</span>
Substitute the known values:
<span> D = sqrt((9 – 2)2 + (25 – 1)2)</span>
<span> D = 25 m</span>
I assume the unknown here is the time it would require for the particle to move from point A to B. This can be answered by dividing the calculated distance by the speed given above.
<span> t = (25 m)/ (50 m/s) = 0.5 s</span>
<span>Thus, it will take 0.5s for the particle to complete the route. </span>