Answer:
The angle for the forward Mach line is 19.47°
The angle for the rearward Mach line is 5.21°
Explanation:
From table A-1 (Modern Compressible Flow: with historical perspective):
(M₁ = 3)
If Po₁ = Po₂

Table A-1:

Table A-5:
v₁ = 49.76°
μ₁ = 19.47°
v₂ = 60.55°
μ₂ = 16°
θ = 60.55 - 49.76 = 10.79°
The angle for the forward Mach line is:
μ₁ = 19.47°
The angle for the rearward Mach line is:
θr = μ₂ - θ = 16 - 10.79 = 5.21°
Answer:
<em>The distance the car traveled is 21.45 m</em>
Explanation:
<u>Motion With Constant Acceleration
</u>
It occurs when an object changes its velocity at the same rate thus the acceleration is constant.
The relation between the initial and final speeds is:
![v_f=v_o+at\qquad\qquad [1]](https://tex.z-dn.net/?f=v_f%3Dv_o%2Bat%5Cqquad%5Cqquad%20%5B1%5D)
Where:
a = acceleration
vo = initial speed
vf = final speed
t = time
The distance traveled by the object is given by:
![\displaystyle x=v_o.t+\frac{a.t^2}{2}\qquad\qquad [2]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%3Dv_o.t%2B%5Cfrac%7Ba.t%5E2%7D%7B2%7D%5Cqquad%5Cqquad%20%5B2%5D)
Solving [1] for a:

Substituting the given data vo=0, vf=6.6 m/s, t=6.5 s:


The distance is now calculated with [2]:

x = 21.45 m
The distance the car traveled is 21.45 m
Answer: 24.97 kg
Explanation:
The gravitational force between two objects of masses M1, and M2 respectively, and separated by a distance R, is:
F = G*(M1*M2)/R^2
Where G is the gravitational constant:
G = 6.67*10^-11 m^3/(kg*s^2)
In this case, we know that
R = 0.002m
F = 0.0104 N
and that M1 = M2 = M
And we want to find the value of M, then we can replace those values in the equation to get
0.0104 N = (6.67*10^-11 m^3/(kg*s^2))*(M*M)/(0.002m)^2
(0.0104 N)*(0.002m)^2/(6.67*10^-11 m^3/(kg*s^2)) = M^2
623.69 kg^2 = M^2
√(623.69 kg^2) = M = 24.97 kg
This means that the mass of each object is 24.97 kg
Answer:
F(Mars) = 2 G m M / (4 R)^2 force of Sun on Mars
F(Merc) = G m M / R^2 force of force of Sun on Mercury
R = distance of Sun from Mercury, m = mass of Mercury
F(Merc) / F(Mars) = 4^2 / 2 = 8
<em><u>This</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>can</u></em><em><u> </u></em><em><u>do</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>boy</u></em><em><u> </u></em><em><u>or</u></em><em><u> </u></em><em><u>girl</u></em><em><u> </u></em>