Answer:
2.48 mol/L.
Explanation:
- The molarity of the solution can be expressed as <em>the number of moles of solute in 1.0 liter of the solution, </em>(M = n / V).
- It is also can be calculated from the relation:
<em>M = (mass / molar mass) solute x (1000 / V of solution)</em>
The solute is toluene and the solvent is benzene.
mass of toluene (solute) = 57.1 g,
molar mass of toluene (solute) = 92.14 g/mol.
volume of the solution = 250 ml.
∴ M = (mass / molar mass) solute x (1000 / V of solution) = [(57.1 g / 92.14 g/mol) x (1000 / 250 ml)] = 2.48 mol/L.
0.004382166 Make sure to round to the right amount of Sig Figs
The balanced reaction is as below
3A₂B + 2DC₃→ 6 AC + D₂B₃
The number that must be to the left of AC is 6
Explanation
- According to the law of mass conservation , the number of atoms in reactant side must be equal to number to the number of atoms in product side.
- Therefore the equation above is balance since it obey the law of mass conservation.
- For example there is 6 atoms of A in reactant side and 6 in product side.
Answer:
A long lever with the fulcrum as close as possible to the load
Explanation:
If F be the effort , W be the weight , L₁ be the distance of load from fulcrum and L₂ be the distance of effort from the fulcrum ,
Taking moment of force about the fulcrum , we have
W x L₁ = F x L₂
F = W x ( L₁ / L₂ )
F will be minimum when L₁ will be minimum .
Hence fulcrum should be as close as possible to the load.
FALSE
There are other limiting factors like lack of space, diseases, and com petition.