Answer:
Ka = 6.02x10⁻⁶
Explanation:
The equilibrium that takes place is:
We <u>calculate [H⁺] from the pH</u>:
- [H⁺] =

Keep in mind that [H⁺]=[A⁻].
As for [HA], we know the acid is 0.66% dissociated, in other words:
We <u>calculate [HA]</u>:
Finally we <u>calculate the Ka</u>:
- Ka =
= 6.02x10⁻⁶
Answer:
Atomic emission spectrum came out by a series of colored lines
Explanation:
When electricity is passing through an element or when it is viewing through a prism, a unique spectra of light emitted by an element is called atomic emission spectra. They are acting as an element of finger print because they are unique. When we are seeing a set of colored lines or a black background , it is an emission spectrum. If we are watching black lines on a colored background it is absorption spectrum. In electromagnetic spectrum the visible portion are the colors.
In nucleus electrons can exist in some areas are known as shells. Shell corresponds an energy level that is designed by a quantum number n. The lowest energy level electrons are close to the nucleus.
An atom is shone by light, its electrons absorbs photons and it gain energy, and jump to higher level.
[H+] in first brand:
4.5 = -log([H+])
[H+] = 10^(-4.5)
[H+] in second brand:
5 = -log[H+]
[H+] = 10^(-5)
Difference = 10^(-4.5) - 10^(-5)
= 2.2 x 10⁻⁵
The answer is A.
Answer:
Both require time, but velocity requires displacement and speed requires distance
Explanation:
For calculating speed we require time and distance because speed is defined as the distance per unit time and as speed is a scalar quantity it does not have any direction
But for calculating the velocity we require time as well as displacement because velocity is defined as the displacement per unit time and as velocity is a vector quantity it has direction
Displacement is the shortest distance between the initial position and the final position and it has a specified direction as well
Answer: Transition from X to Y will have greater energy difference.
Explanation: For studying the energy difference, we require Planck's equation.

where, h = Planck's Constant
c = Speed of light
E = Energy
= Wavelength of particle
From the equation, it is visible that the energy and wavelength follow inverse relation which means that with low wavelength value, energy will be the highest and vice-versa.
As electron A falls from X-energy level to Y-energy level, it releases blue light which has low wavelength value (around 470 nm) which means that it has high energy.
Similarly, Electron B releases red light when it falls from Y-energy level to Z-energy level, which has high wavelength value (around 700 nm), giving it a low energy value.
Energy Difference between X-energy level and Y-energy level will be more.