Hello. This question is incomplete. The full question is:
Two blocks are stacked on top of each other on the floor of an elevator. For each of the following situations, select the correct relationship between the magnitudes of the two forces given.
The elevator is moving downward at a constant speed.
The magnitude of the force of the bottom block on the top block is _____ the magnitude of the force of the earth on the top block.
Answer:
The magnitude of the force of the bottom block on top block is equal to the magnitude of the force of the top block on bottom block.
Explanation:
As the elevator is descending, there is only a normal force being applied to the lower surface of the block. This force has a magnitude equal to the force of the upper block, because the only acceleration that is acting in this case is the force of gravity. From that force, the resulting force is zero.
I think the anwser is 3)calculus
Muscles function only by contracting. This makes it necessary for one end of the muscle to be fixed and the other mobile.
Take the bicep for example.
Its origin is at the shoulder and its two heads connect to the bones of the forearm, the radius and ulna.
Now, had the muscle not been fixed at one end, and contracted, it would pull both our shoulder and forearm together resulting in an ineffective movement. The desired motion is to lift the forearm (proximal and distal movement) which can only be achieved if the bicep is fixed at the shoulder and allowed to move at the forearm.
Draw a vector diagram. The net force on particle 1 = F12 + F13 + F14 These forces have to be added as vectors.
We will resolve our forces along the direction 1-4 F12 (tot) = -kQq / a^2 in the direction of particle 4 F12 = -kQq *sin (45) / a^2 F12 = -kQq /( a^2 * sqrt(2) )
By symetry this is the same as F13 F13 = -kQq /( a^2 * sqrt(2) )
F14 = -kQQ / (Sqrt(2)*a) ^ 2
For net force on particle 1 :
F12+F13+F14 = 0 -2kQq /( a^2 * sqrt(2) ) + -kQQ / (Sqrt(2)*a) ^ 2 = 0
Some simple manipulation should give you :
Q/q = -2 sqrt(2)
Answer:
True.
Explanation:
A diode, which allows current to flow in one direction only, consists of two types of semiconductors joined together.
A semiconductor can be defined as a crystalline solid substance that has its conductivity lying between that of a metal and an insulator, due to the effects of temperature or an addition of an impurity. Semiconductors are classified into two main categories;
1. Extrinsic semiconductor.
2. Intrinsic semiconductor.
An intrinsic semiconductor is a crystalline solid substance that is in its purest form and having no impurities added to it. Examples of intrinsic semiconductor are Germanium and Silicon.
In an intrinsic semiconductor, the number of free electrons is equal to the number of holes. Also, in an intrinsic semiconductor the number of holes and free electrons is directly proportional to the temperature; as the temperature increases, the number of holes and free electrons increases and vice-versa.
In an intrinsic semiconductor, each free electrons (valence electrons) produces a covalent bond.