Explanation:
It is given that,
Mass of the soccer ball, m = 0.425 kg
Speed of the ball, u = 15 m/s
Angle with horizontal, 
Time for which the player's foot is in contact with it, 
Part A,
The x component of the soccer ball's change in momentum is given by :



The y component of the soccer ball's change in momentum is given by :



Hence, this is the required solution.
Answer:
The radius of the loop is 20.66 km
Explanation:
let the radius of the loop be r
mass of airplane is m
At the top, the pilot experiences two radial forces, which are
1) Gravitational force is mg
2) Centrifugal forces mv²/r out of the center
When the pilot experiences no weight,
then, mg = mv²/r
r = v² / g
= 450² / 9.8
= 20.66 x 10³3
= 20.66 km
Answer:
Cable color codes are very important for example, If something is not wired properly, it can result in injuries, deaths, fires, and many other problems. This is why there are well-established wire color codes to ensure those working with an around this type of equipment can ensure everything is wired safely and effectively. If we used three phase cables without color code, this can lead too incorrect things that might be a hazard too get not fix and learning new color codes would be hard therefore we should stick too the same color codes for cables and it saves the hassle for needing too check every cable cord color then the original one signed too it.
Answer:
a) 70 N, b) b. Each initially applied a force bigger than static friction to get the box moving and accelerating, then when the desired final speed was achieved they reduced the force to make the net force zero.
Explanation:
a) A constant speed means that magnitude of friction force is equal to the magnitude of the external force. The friction force is directly proportional to the normal force, which is equal to the weight of the box. Therefore, the magnitude of the force is 70 N.
b) Alice used initially a greater force to accelerate the box up to needed speed and later reduced the external force to keep speed constant. The right choice is option b.
- Let, the maximum height covered by projectile be


- Projectile is thrown with a velocity = v
- Angle of projection = θ
- Velocity of projectile at a height half of the maximum height covered be

______________________________
Then –










- Now, the vertical component of velocity of projectile at the height half of
will be –


Therefore, the vertical component of velocity of projectile at this height will be–
☀️
