Answer:
False
Explanation:
Changing the coefficients is one of the steps of balancing a chemical equation. Changing the subscript changes the compounds being used, while changing the coefficient changes the amount of each compound being used.
Answer:
6.25 grams is the mass of solute dissolved.
Explanation:
w/w % : The percentage mass or fraction of mass of the of solute present in total mass of the solution.

Mass of the solution = 50.0 g
Mass of the solvent = x
w/w % = 12.5%

x = 6.25 g
6.25 grams is the mass of solute dissolved.
Answer:
- The first picture attached is the diagram that accompanies the question.
- The<u> second picture attached</u> is the diagram with the answer.
Explanation:
In the box on the left there are 8 Cl⁻ ions and 8 Na⁺ ions.
The dissociaton equation for NaCl(aq) is:
- NaCl (aq) → Na⁺ (aq) + Cl⁻(aq)
The dissociation equation for CaCl₂ (aq) is:
- CaCl₂ (aq) → Ca²⁺ (aq) + 2Cl⁻(aq)
A 0.10MCaCl₂ (aq) solution will have half the number of CaCl₂ units as the number of NaCl units in a 0.20M NaCl (aq) solution.
Thus, while the 0.20M NaCl (aq) solution yields 8 ions of Na⁺ and 8 ions of Cl⁻, the 0.10MCaCl₂ (aq) solution will yield 4 ions of Ca²⁺ (half because the concentration if half) and 8 ions of Cl⁻ (first take half and then multiply by 2 because the dissociation reaction).
Thus, your drawing must show 4 dots representing Ca²⁺ ions and 8 dots representing Cl⁻ ions in the box on the right.
Answer:
0.00471 grams H₂O
Explanation:
To determine the mass, you need to use the following equation:
Q = mcΔT
In this equation,
-----> Q = energy/heat (J)
-----> m = mass (g)
-----> c = specific heat capacity (J/g°C)
-----> ΔT = temperature change (°C)
The specific heat capacity of water is 4182 J/g°C. You can plug the given values into the equation and simplify to isolate "c".
Q = 0.709 J c = 4182 J/g°C
m = ? g ΔT = 0.036 °C
Q = mcΔT <----- Equation
0.709 J = m(4182 J/g°C)(0.036 °C) <----- Insert values
0.709 J = m(150.552) <----- Multiply 4182 and 0.036
0.00471 = m <----- Divide both sides by 150.552