Answer:
v₀ = 13.9 10³ m / s
Explanation:
Let's analyze this exercise we can use the basic kinematics relationships to love the initial velocity and the acceleration we can look for from Newton's second law where force is gravitational attraction.
F = m a
G m M / x² = m dv / dt = m dv/dx dx/dt
G M / x² = dv/dx v
GM dx / x² = v dv
We integrate
v² / 2 = GM (-1 / x)
We evaluate between the lower limits where x = Re = 6.37 10⁶m and the velocity v = vo and the upper limit x = 2.50 10⁸m with a velocity of v = 8.50 10³ m/s
½ ((8.5 10³)² - v₀²) = GM (-1 /(2.50 10⁸) + 1 / (6.37 10⁶))
72.25 10⁶ - v₀² = 2 G M (+0.4 10⁻⁸ - 1.57 10⁻⁷)
72.25 10⁶ - v₀² = 2 6.63 10⁻¹¹ 5.98 10²⁴ (-15.3 10⁻⁸)
72.25 10⁶ - v₀² = -1.213 10⁸
v₀² = 72.25 10⁶ + 1,213 10⁸
v₀² = 193.6 10⁶
v₀ = 13.9 10³ m / s
Answer: 20 m/s
Explanation: To solve this problem we have to consider the expression of the kinetic energy given by:
Ekinetic=(1/2)*(m*v^2)
then E=0.5*30Kg*(20 m/s)^2=15*400=6000J
Answer:
1.2 A
Explanation:
From the diagram attached, The three resistors are parallel because the each ends of the resistors are connected together. Since they are in parallel, the voltage across each resistor is the same. The voltage source connected in parallel to the resistors is 60 V. Therefore the voltage across the 50 Ω resistor is 60 V. Using ohm law:
Voltage (V) = Current (I) × Resistance (R)
V = IR
I = V/R
I = 60 V/ 50 Ω
I = 1.2 A
The current in the 50 Ω resistor is 1.2 A
Answer:
The z-component of the force is
Explanation:
From the question we are told that
The charge on the particle is
The magnitude of the magnetic field is 
The velocity of the particle toward the x-direction is 
The velocity of the particle toward the y-direction is

The velocity of the particle toward the z-direction is

Generally the force on this particle is mathematically represented as

So we have

substituting values
So the z-component of the force is
Note : The cross-multiplication template of unit vectors is shown on the first uploaded image ( From Wikibooks ).