Answer:
Acceleration is 7.990487515m/s²
Initial velocity is 0m.s
Explanation:
s=ut+(1/2)at²
210=0(7.25)+(1/2)a(7.25²)
210=26.28125a
∴a=7.990487515m/s²
'Vi' or 'u' is the inital speed. Since it starts from rest, this equals 0.
Answer:
If the driver is wearing a seat belt, the seat belt rather than the windshield applies the unbalanced force that stops the driver's forward motion. The force from the seat belt is applied over a longer time, so the force causes less damage.
Explanation:
Answer:
a)= 0.025602u
b) = 23.848MeV
c) N = 1.546 × 10¹³
Explanation:
The reaction is
²₁H + ²₁H ⇄ ⁴₂H + Q
a) The mass difference is
Δm = 2m(²₁H) - m (⁴₂H)
= 2(2.014102u) - 4.002602u
= 0.025602u
b) Use the Einstein mass energy relation ship
The enegy release is the mass difference times 931.5MeV/U
E = (0.025602) (931.5)
= 23.848MeV
c)
the number of reaction need per seconds is
N = Q/E
= 59W/ 23.848MeV

N = 1.546 × 10¹³
Displacement from the center line for minimum intensity is 1.35 mm , width of the slit is 0.75 so Wavelength of the light is 506.25.
<h3>How to find Wavelength of the light?</h3>
When a wave is bent by an obstruction whose dimensions are similar to the wavelength, diffraction is observed. We can disregard the effects of extremes because the Fraunhofer diffraction is the most straightforward scenario and the obstacle is a long, narrow slit.
This is a straightforward situation in which we can apply the
Fraunhofer single slit diffraction equation:
y = mλD/a
Where:
y = Displacement from the center line for minimum intensity = 1.35 mm
λ = wavelength of the light.
D = distance
a = width of the slit = 0.75
m = order number = 1
Solving for λ
λ = y + a/ mD
Changing the information that the issue has provided:
λ = 1.35 * 10^-3 + 0.75 * 10^-3 / 1*2
=5.0625 *10^-7 = 506.25
so
Wavelength of the light 506.25.
To learn more about Wavelength of the light refer to:
brainly.com/question/15413360
#SPJ4
Momentum = mass x velocity
Thus Option A is the correct answer
Momentum (dog) = 10 kg x (0.447 x 30) m/s
= 134.1 Kg m/s
Momentum ( bullet) = 0.02 kg x (0.447 x 800) m/s
= 7.152 Kg m/s
Momentum ( truck) = 0, as v = 0
tightrope has both low mass and low speed, thus its momentum will be low