Answer:
m1/m2 = 0.51
Explanation:
First to all, let's gather the data. We know that both rods, have the same length. Now, the expression to use here is the following:
V = √F/u
This is the equation that describes the relation between speed of a pulse and a force exerted on it.
the value of "u" is:
u = m/L
Where m is the mass of the rod, and L the length.
Now, for the rod 1:
V1 = √F/u1 (1)
rod 2:
V2 = √F/u2 (2)
Now, let's express V1 in function of V2, because we know that V1 is 1.4 times the speed of rod 2, so, V1 = 1.4V2. Replacing in the equation (1) we have:
1.4V2 = √F/u1 (3)
Replacing (2) in (3):
1.4(√F/u2) = √F/u1 (4)
Now, let's solve the equation 4:
[1.4(√F/u2)]² = F/u1
1.96(F/u2) =F/u1
1.96F = F*u2/u1
1.96 = u2/u1 (5)
Now, replacing the expression of u into (5) we have the following:
1.96 = m2/L / m1/L
1.96 = m2/m1 (6)
But we need m1/m2 so:
1.96m1 = m2
m1/m2 = 1/1.96
m1/m2 = 0.51
The big bang theory is the most accepted theory regarding the origin of the solar system. It suggests that our star, the Sun, was first created by a cloud of<span>dust and gas.</span>
Answer:
least distance= 13mm
ratio of the lattice = 1 : 0.71 : 0.58
Explanation:
given λ₁ = 650nm = 650×10⁻⁹m, λ₂ = 500nm = 500×10⁻⁹m
Answer:
D. the masses of the objects and the distance between them
Explanation:
Gravitation is a force, a force doesn't care about the shape or density of objects, only about their masses... and distances.
And you can get it using the following equation:

Where :
G is the universal gravitational constant
: G = 6.6726 x 10-11N-m2/kg2
m represent the mass of each of the two objects
d is the distance between the centers of the objects.
Answer:
Mass of the climber = 69.38 kg
Explanation:
Change in length

Load, P = m x 9.81 = 9.81m
Young's modulus, Y = 0.37 x 10¹⁰ N/m²
Area

Length, L = 15 m
ΔL = 5.1 cm = 0.051 m
Substituting
Mass of the climber = 69.38 kg