Answer:
28.5 m/s
18.22 m/s
Explanation:
h = 20 m, R = 20 m, theta = 53 degree
Let the speed of throwing is u and the speed with which it strikes the ground is v.
Horizontal distance, R = horizontal velocity x time
Let t be the time taken
20 = u Cos 53 x t
u t = 20/0.6 = 33.33 ..... (1)
Now use second equation of motion in vertical direction
h = u Sin 53 t - 1/2 g t^2
20 = 33.33 x 0.8 - 4.9 t^2 (ut = 33.33 from equation 1)
t = 1.17 s
Put in equation (1)
u = 33.33 / 1.17 = 28.5 m/s
Let v be the velocity just before striking the ground
vx = u Cos 53 = 28.5 x 0.6 = 17.15 m/s
vy = uSin 53 - 9.8 x 1.17
vy = 28.5 x 0.8 - 16.66
vy = 6.14 m/s
v^2 = vx^2 + vy^2 = 17.15^2 + 6.14^2
v = 18.22 m/s
Both have positive charge. In fact, an alpha particle IS a nucleus of a Helium atom.
In electricity, the most famous and basic equation is the Ohm's Law which relates the parameters voltage, current and resistance. One form of this law as written in equation is V = IR, where V is the voltage in volts, I is the current in amperes and R is the resistance in ohms. These parameters depends in the arrangements, whether it's series or parallel.
In a series connection, the voltage is greater across a high-resistance resistor. Therefore, the voltage is much greater for the 20-ohm resistor. However,if it is a parallel circuit, the voltage is just the same for both resistors.
F=mv^2/R
----> V^2=FR/m=(350x0.9)/2.5=126
----- V=11.22 m/s