Answer:
2) 0.4 mol
Explanation:
Step 1: Given data
- Volume of the solution (V): 500 mL
- Molar concentration of the solution (M): 0.8 M = 0.8 mol/L
Step 2: Convert "V" to L
We will use the conversion factor 1 L = 1000 mL.
500 mL × 1 L/1000 mL = 0.500 L
Step 3: Calculate the moles of KBr (solute)
The molarity is the quotient between the moles of solute (n) and the liters of solution.
M = n/V
n = M × V
n = 0.8 mol/L × 0.500 L = 0.4 mol
Answer:
0.4 M
Explanation:
The process that takes place in an aqueous K₂HPO₄ solution is:
First we <u>calculate how many K₂HPO₄ moles are there in 200 mL of a 0.2 M solution</u>:
- 200 mL * 0.2 M = 40 mmol K₂HPO₄
Then we <u>convert K₂HPO₄ moles into K⁺ moles</u>, using the <em>stoichiometric coefficients</em> of the reaction above:
- 40 mmol K₂HPO₄ *
= 80 mmol K⁺
Finally we <em>divide the number of K⁺ moles by the volume</em>, to <u>calculate the molarity</u>:
- 80 mmol K⁺ / 200 mL = 0.4 M
Answer:
Convection, and boundaries
Explanation:
In this lab, you modeled how plates move. The plates that make up Earth’s lithosphere move because of convection . You also saw how plates interact with each other. The interactions between plates form plate boundaries of which there are three main types.