Answer:
Concentration of OH⁻:
1.0 × 10⁻⁹ M.
Explanation:
The following equilibrium goes on in aqueous solutions:
.
The equilibrium constant for this reaction is called the self-ionization constant of water:
.
Note that water isn't part of this constant.
The value of
at 25 °C is
. How to memorize this value?
- The pH of pure water at 25 °C is 7.
![[\text{H}^{+}] = 10^{-\text{pH}} = 10^{-7}\;\text{mol}\cdot\text{dm}^{-3}](https://tex.z-dn.net/?f=%5B%5Ctext%7BH%7D%5E%7B%2B%7D%5D%20%3D%2010%5E%7B-%5Ctext%7BpH%7D%7D%20%3D%2010%5E%7B-7%7D%5C%3B%5Ctext%7Bmol%7D%5Ccdot%5Ctext%7Bdm%7D%5E%7B-3%7D)
- However,
for pure water. - As a result,
at 25 °C.
Back to this question.
is given. 25 °C implies that
. As a result,
.
Answer:
a. The phenolphthalein acts as a color changing indicator to signal the endpoint of the reaction.
Explanation:
Phenolphthalein is an organic substance with chemical formula
.
It is a substance commonly used in acid-base titrations to indicate the end point in the titration because phenolphthalein is colorless in acidic solutions but turns a purplish-pink color in basic solutions.
In this way it helps visually to notice when the final point of the titration has been reached.
To identify minerals
Each material chemical makeup are a variety of chemical compounds which has each own category. They have different functional groups which helps people identify which material they look for. For instance, hydroxyl group has chemical makeup of alcohol
Answer:
Trial Number of moles
1 0.001249mol
2 0.001232mol
3 0.001187 mol
Explanation:
To calculate the <em>number of moles of tritant</em> you need its<em> molarity</em>.
Since the<em> molarity</em> is not reported, I will use 0.1000M (four significant figures), which is used in other similar problems.
<em>Molarity</em> is the concentration of the solution in number of moles of solute per liter of solution.
In this case the solute is <em>NaOH</em>.
The formula is:

Solve for the <em>number of moles:</em>

Then, using the molarity of 0.1000M and the volumes for each trial you can calculate the number of moles of tritant.
Trial mL liters Number of moles
1 12.49 0.01249 0.01249liters × 0.1000M = 0.001249mol
2 12.32 0.01232 0.01232liters × 0.1000M = 0.001232mol
3 11.87 0.01187 0.01187liters × 0.1000M = 0.001187 mol