Answer:
Half-life = 3 minutes
Explanation:
Using the radioactive decay equation we can solve for reaction constant, k. And by using:
K = ln2 / Half-life
We can find half-life of polonium-218
Radioactive decay:
Ln[A] = -kt + ln [A]₀
Where:
[A] could be taken as mass of polonium after t time: 1.0mg
k is Reaction constant, our incognite
t are 12 min
[A]₀ initial amount of polonium-218: 16mg
Ln[A] = -kt + ln [A]₀
Ln[1.0mg] = -k*12min + ln [16mg]
-2.7726 = - k*12min
k = 0.231min⁻¹
Half-life = ln 2 / 0.231min⁻¹
<h3>Half-life = 3 minutes</h3>
I think it's Almond Soy Milk because they're recommending your body's pH to be at 7.5 and the Almond Soy Milk is the answer with the closest pH to 7.5
I mostly believe in between D and B beacuse K3po4 and caco3 is not an element equation
<span>Based on the experience of the responder, to correctly calculate measurements in real-world. Firstly is to avoid errors as much as possible. Errors are what makes your measurement invalid and unreliable. There are two types of error which is called the systematic error and the random error. Each error has different sources. Words that were mentioned –invalid and unreliable are very important key aspects to determine that your measure is truly accurate and consistent. Some would recommend using the mean method, doing three trials in measuring and getting their mean, in response to this problem.</span>
Explanation:
According to the Henderson-Hasselbalch equation, the relation between pH and
is as follows.
pH = 
where, pH = 7.4 and
= 7.21
As here, we can use the
nearest to the desired pH.
So, 7.4 = 7.21 + 
0.19 = 
= 1.55
1 mM phosphate buffer means
+
= 1 mM
Therefore, the two equations will be as follows.
= 1.55 ............. (1)
+
= 1 mM ........... (2)
Now, putting the value of
from equation (1) into equation (2) as follows.
1.55
= 1 mM
2.55
= 1 mM
= 0.392 mM
Putting the value of
in equation (1) we get the following.
0.392 mM +
= 1 mM
= (1 - 0.392) mM
= 0.608 mM
Thus, we can conclude that concentration of the acid must be 0.608 mM.