Basically when frozen water/ice crystals high in the atmosphere collect water vapor molecules they grow. They are sometimes supplied by microscopic cloud droplets.
Answer: The reaction order with respect to A is m
Explanation:
Order of the reaction is defined as the sum of the concentration of terms on which the rate of the reaction actually depends. It is the sum of the exponents of the molar concentration in the rate law expression.
Elementary reactions are defined as the reactions for which the order of the reaction is same as its molecularity and order with respect to each reactant is equal to its stoichiometric coefficient as represented in the balanced chemical reaction.
For the given reaction:
![Rate=k[A]^m[B]^n](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5Em%5BB%5D%5En)
In this equation, the order with respect to each reactant is not equal to its stoichiometric coefficient which is represented in the balanced chemical reaction.
Hence, this is not considered as an elementary reaction.
Order with respect to A = m
Order with respect to B = n
Overall order = m+n
Thus order with respect to A is m.
Answer: Earth's climate has fluctuated through deep time, pushed by these 10 ... How Earth's Climate Changes Naturally (and Why Things Are Different Now) ... So if the climate changed before humans, how can we be sure we're ... can be disruptive, but in the grand scale of Earth's history it's tiny and temporary
Explanation:
Answer:
(a) 
(b) 
(c) 
(d) 
(e) 
Explanation:
To calculate de pH of an acid solution the formula is:
![pH = -Log ([H^{+}]) = 1](https://tex.z-dn.net/?f=pH%20%3D%20-Log%20%28%5BH%5E%7B%2B%7D%5D%29%20%3D%201)
were [H^{+}] is the concentration of protons of the solution. Therefore it is necessary to know the concentration of the protons for every solution in order to solve the problem.
(a) and (c) are strong acids so they dissociate completely in aqueous solution. Thus, the concentration of the acid is the same as the protons.
(b) and (e) are strong bases so they dissociate completely in aqueous solution too. Thus, the concentration of the base is the same as the oxydriles. But in this case it is necessary to consider the water autoionization to calculate the protons concentration:
![K_{w} =[H^{+} ][OH^{-}]=10^{-14}](https://tex.z-dn.net/?f=K_%7Bw%7D%20%3D%5BH%5E%7B%2B%7D%20%5D%5BOH%5E%7B-%7D%5D%3D10%5E%7B-14%7D)
clearing the ![[H^{+} ]](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%20%5D)
![[H^{+} ]=\frac{10^{-14}}{[OH^{-}]}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%20%5D%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7B%5BOH%5E%7B-%7D%5D%7D)
(d) is a weak base so it is necessary to solve the equilibrium first, knowing 
The reaction is
→
so the equilibrium is

clearing the <em>x</em>

![x=[H^{+}]=4.93x10^{-10}](https://tex.z-dn.net/?f=x%3D%5BH%5E%7B%2B%7D%5D%3D4.93x10%5E%7B-10%7D)