Answer:
The correct order of increasing reactivity toward nucleophilic acyl substitution is E < D < C < A < F < B.
Explanation:
The stability of the leaving group best determines the manner of reactivity of carboxylates to nucleophilic substitution after the substitution of the nucleophile to the leaving group. The leaving group should, therefore, be protonated with hydrogen ion in the solution to form a stable molecule. From the given list: The leaving group for A, Ethyl thioacetate will be ethanethiol. For B, Acetyl chloride will be Hydrochloric acid. For C, Sodium acetate will be Sodium Hydroxide. For D, Ethyl acetate will be Ethanol. For E, Acetamide will be Ammonia, and for F, Acetic anhydride will be Ethanoic acid. The reactivity of the substitution reaction is dependent on the stability of these leaving groups. The stability of these leaving groups depends on their pKa, and the more the pKa, the lesser the acidity of the leaving group, and the lower the reactivity. Therefore, considering their pKa: A is 8.5, B is -7, C is 13.8, D is 15.9, E is 36, and F is 4.8. When we rearrange this pKa in descending order, we have E, D. C, A, F, B. Which is also the increased reactivity of the nucleophilic acyl substitution.
A3B9 represents a molecular formula. The representation of the empirical formula for this compound is AB3. This is so because the empirical formula is the simplest ratio of the atoms present in the molecule. You get AB3 when you divide the subscripts of A3B9, this is 3 and 9, by the greatest common factor, which is 3. 3/3 = 1 and 9/3 = 3, so the subscripts for the empirical formula are 1 and 3, which is what AB3 represents. <span>Answer: AB3.</span>
Percent composition by mass is calculated (mass of element within compound)/(mass of compound)*100. The lower the total molar mass of the compound, the greater the percent composition of sulfur. In this case, MgS would be that compound, since Mg has the lowest molar mass of the four elements bonded to S.
D increase in temperature and increase in pressure.
111.1 mL of water
Explanation:
Weight per volume concentration (w/v %) is defined as
weight per volume concentration = (mass of solute (g) / volume of solution (mL)) × 100
volume of solution = (mass of solute × 100) / weight per volume concentration
volume of solution = (1 × 100) / 0.9 = 111.1 mL
volume of water = volume of solution = 111.1 mL
Learn more about:
weight per volume concentration
brainly.com/question/12721794
#learnwithBrainly