Answer:
2.30 × 10⁻⁶ M
Explanation:
Step 1: Given data
Concentration of Mg²⁺ ([Mg²⁺]): 0.039 M
Solubility product constant of Mg(OH)₂ (Ksp): 2.06 × 10⁻¹³
Step 2: Write the reaction for the solution of Mg(OH)₂
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
Step 3: Calculate the minimum [OH⁻] required to trigger the precipitation of Mg²⁺ as Mg(OH)₂
We will use the following expression.
Ksp = 2.06 × 10⁻¹³ = [Mg²⁺] × [OH⁻]²
[OH⁻] = 2.30 × 10⁻⁶ M
Answer/Explanation:
Chlorine and Fluorine are in the Halogen family. The elements in the Halogen family are:
Fluorine (F)
Chlorine (Cl)
Bromine (Br)
Iodine (I)
Astatine (At)
Tennessine (Ts)
Hydrogen (H) is a nonmetal
Oxygen (O) is a nonmetal
Lithium (Li) is an alkaline metal.
Answer:
duplet-A set of two things or people
Octet-A group of 8 things or people
<h2>Answer:</h2>
Arrangement of inter molecular forces from strongest to weakest.
- Hydrogen bonding
- Dipole-dipole interactions
- London dispersion forces.
<h3>Explanation:</h3>
Intermolecular forces are defined as the attractive forces between two molecules due to some polar sides of molecules. They can be between nonpolar molecules.
Hydrogen bonding is a type of dipole dipole interaction between the positive charge hydrogen ion and the slightly negative pole of a molecule. For example H---O bonding between water molecules.
Dipole dipole interactions are also attractive interactions between the slightly positive head of one molecule and the negative pole of other molecules.
But they are weaker than hydrogen bonding.
London dispersion forces are temporary interactions caused due to electronic dispersion in atoms of two molecules placed together. They are usually in nonpolar molecules like F2, I2. they are weakest interactions.
Explanation:
In any chemical change, one or more initial substances change into a different substance or substances. ... According to the law of conservation of matter, matter is neither created nor destroyed, so we must have the same number and kind of atoms after the chemical change as were present before the chemical change
Example:
The carbon atom in coal becomes carbon dioxide when it is burned. The carbon atom changes from a solid structure to a gas but its mass does not change.