1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tiny-mole [99]
3 years ago
15

The natural variation of a process relative to the variation allowed by the design specifications is known as

Engineering
1 answer:
Nimfa-mama [501]3 years ago
3 0

Answer:

"Process capability" is the correct answer.

Explanation:

  • The Process Capability seems to be a method of measuring of how and why the framework performs concerning something like the successful objectives. This same capacity is characterized as that of the client's voice over procedure speech.
  • Through using functionality indicators it analyses the performance with an in-control process with the permissible range.
You might be interested in
On-site oil storage containers must be marked "Used Oil."<br><br> True. <br><br> False.
Scrat [10]

Answer:

How must used oil storage containers be marked? Containers and aboveground tanks used to store used oil at generator facilities must be labeled or marked clearly with the words “Used Oil" (40 CFR Section 279.22(c)).

Explanation:

i think it will help you

7 0
3 years ago
A sheet of steel 1.5 mm thick has nitrogen (N2) atmospheres on both sides at 1200°C and is permitted to achieve steady-state dif
Gelneren [198K]

Answer:

do the wam wam

Explanation:

3 0
3 years ago
Calculate the maximum load that a 7075 series aluminum alloy bar (with a T6 temper heat treatment) can support without permanent
Aleksandr [31]

Answer:

The maximum load the bar can withstand = 35.43 KN

Explanation:

Ultimate tensile strength of the given aluminium bar \sigma = 540 M pa

Cross section area of the bar = 8.1^{2}  = 65.61 mm^{2}

We know that the ultimate strength of the bar is calculated from

\sigma = \frac{P_{max} }{A}

540 = \frac{P_{max} }{65.61}

P_{max} = 540 × 65.61

P_{max} =  35.43 KN

Therefore the maximum load the bar can withstand = 35.43 KN

6 0
4 years ago
An industrial load with an operating voltage of 480/0° V is connected to the power system. The load absorbs 120 kW with a laggin
Leni [432]

Answer:

Q=41.33 KVAR\ \\at\\\ 480 Vrms

Explanation:

From the question we are told that:

Voltage V=480/0 \textdegree V

Power P=120kW

Initial Power factor p.f_1=0.77 lagging

Final Power factor p.f_2=0.9 lagging

Generally the equation for Reactive Power is mathematically given by

Q=P(tan \theta_2-tan \theta_1)

Since

p.f_1=0.77

cos \theta_1 =0.77

\theta_1=cos^{-1}0.77

\theta_1=39.65 \textdegree

And

p.f_2=0.9

cos \theta_2 =0.9

\theta_2=cos^{-1}0.9

\theta_2=25.84 \textdegree

Therefore

Q=P(tan 25.84 \textdegree-tan 39.65 \textdegree)

Q=120*10^3(tan 25.84 \textdegree-tan 39.65 \textdegree)

Q=-41.33VAR

Therefore

The size of the capacitor in vars that is necessary to raise the power factor to 0.9 lagging is

Q=41.33 KVAR\ \\at\\\ 480 Vrms

6 0
3 years ago
As part of a heat treatment process, cylindrical, 304 stainless steel rods of 100-mm diameter are cooled from an initial tempera
saveliy_v [14]

Answer:

Explanation:

Given that:

diameter = 100 mm

initial temperature = 500 ° C

Conventional coefficient = 500 W/m^2 K

length  = 1 m

We obtain the following data from the tables A-1;

For the stainless steel of the rod \overline T = 548 \ K

\rho = 7900 \ kg/m^3

K = 19.0 \ W/mk \\ \\ C_p = 545 \ J/kg.K

\alpha = 4.40 \times 10^{-6} \ m^2/s \\ \\  B_i = \dfrac{h(\rho/4)}{K} \\ \\  =0.657

Here, we can't apply the lumped capacitance method, since Bi > 0.1

\theta_o = \dfrac{T_o-T_{\infty}}{T_i -T_\infty}} \\ \\ \theta_o = \dfrac{50-30}{500 -30}} \\ \\ \theta_o = 0.0426\\

0.0426 = c_1 \ exp (- E^2_1 F_o_)\\ \\ \\  0.0426 = 1.1382 \ exp (-10.9287)^2 \ f_o   \\ \\ = f_o = \dfrac{In(0.0374)}{0.863} \\ \\ f_o = 3.81

t_f = \dfrac{f_o r^2}{\alpha} \\ \\ t_f = \dfrac{3.81 \times (0.05)^2}{4.40 \times 10^{-6}} \\ \\  t_f= 2162.5 \\ \\ t_f = 36 mins

However, on a single rod, the energy extracted is:

\theta = pcv (T_i - T_{\infty} )(1 - \dfrac{2 \theta}{c} J_1 (\zeta) )  \\ \\ = 7900 \\times 546 \times 0.007854 \times (500 -300) (1 - \dfrac{2 \times 0.0426}{1.3643}) \\ \\  \theta = 1.54 \times 10^7 \ J

Hence, for centerline temperature at 50 °C;

The surface temperature is:

T(r_o,t) = T_{\infty} +(T_1 -T_{\infty}) \theta_o \ J_o(\zeta_1) \\ \\ = 30 + (500-30) \times 0.0426 \times 0.5386 \\ \\ \mathbf{T(r_o,t) = 41.69 ^0 \ C}

5 0
3 years ago
Other questions:
  • An air conditioner using refrigerant R-134a as the working fluid and operating on the ideal vapor-compression refrigeration cycl
    12·1 answer
  • Engineering Questions
    15·2 answers
  • The uniform crate has a mass of 50 kg and rests on the cart having an inclined surface. Determine the smallest acceleration that
    10·1 answer
  • How do Consumers sometimes interact with a producers?
    13·1 answer
  • Explain why surface temperature increases when two bodies are rubbed against each other. What is the significance of temperature
    13·1 answer
  • The coolant heat storage system:
    10·1 answer
  • A crystalline grain of aluminum in a metal plate is situated so that a tensile load is oriented along the [1 1 1] direction. Wha
    9·1 answer
  • Omg I just got 17/25 questions wrong using this on an Ag test , but got 100’s every time on health
    6·2 answers
  • A PLL is set up so that its VCO free-runs at 8.9 MHz. The VCO does not change frequency unless its input is within plus or minus
    11·1 answer
  • A 75-hp motor that has an efficiency of 91.0% is worn-out and is replaced by a motor that has a high efficiency 75-hp motor that
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!