By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
<h3>How to determine the differential of a one-variable function</h3>
Differentials represent the <em>instantaneous</em> change of a variable. As the given function has only one variable, the differential can be found by using <em>ordinary</em> derivatives. It follows:
dy = y'(x) · dx (1)
If we know that y = (1/x) · sin 2x, x = π and dx = 0.25, then the differential to be evaluated is:





By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
To learn more on differentials: brainly.com/question/24062595
#SPJ1
Answer:
Almost done
Explanation:
I am just finishing up my work
Answer:
The velocity of flow is 10.0 m/s.
Explanation:
We shall use Manning's equation to calculate the velocity of flow
Velocity of flow by manning's equation is given by

where
n = manning's roughness coefficient
R = hydraulic radius
S = bed slope of the channel
We know that for an asphalt channel value of manning's roughness coefficient = 0.016
Applying values in the above equation we obtain velocity of flow as
