Answer:
The expression is shown in the explanation below:
Explanation:
Thinking process:
Let the time period of a simple pendulum be given by the expression:

Let the fundamental units be mass= M, time = t, length = L
Then the equation will be in the form


where k is the constant of proportionality.
Now putting the dimensional formula:
![T = KM^{a}L^{b} [LT^{-} ^{2}]^{c}](https://tex.z-dn.net/?f=T%20%3D%20KM%5E%7Ba%7DL%5E%7Bb%7D%20%20%5BLT%5E%7B-%7D%20%5E%7B2%7D%5D%5E%7Bc%7D)

Equating the powers gives:
a = 0
b + c = 0
2c = 1, c = -1/2
b = 1/2
so;
a = 0 , b = 1/2 , c = -1/2
Therefore:

T = 
where k = 
Answer:
for i in range(0,10):
if SimonPattern[i] == UserPattern[i]:
score = score + 1
i = i + 1
else:
break
if i == 9:
score = score + 1
print("Total Score: {}".format(score))
Explanation:
This for loop was made using Python. Full code attached.
- For loop requires a range of numbers to define the end points. For this Simon Says game, we are talking about 10 characters, so that must be the range for the for loop: from 0 to 10.
- Conditional if tests if Simon pattern matches User's one characheter by one and add point for each match.
- Break statement is ready to escape the for loop at first mismatch.
- As we are starting from index 0, if the users matched all the characters correctly, then we need to add 1, otherwise the maximun score would be 9 and it should be 10.
Answer:
(i) 12 V in series with 18 Ω.
(ii) 0.4 A; 1.92 W
(iii) 1,152 J
(iv) 18Ω — maximum power transfer theorem
Explanation:
<h3>(i)</h3>
As seen by the load, the equivalent source impedance is ...
10 Ω + (24 Ω || 12 Ω) = (10 +(24·12)/(24+12)) Ω = 18 Ω
The open-circuit voltage seen by the load is ...
(36 V)(12/(24 +12)) = 12 V
The Thevenin's equivalent source seen by the load is 12 V in series with 18 Ω.
__
<h3>(ii)</h3>
The load current is ...
(12 V)/(18 Ω +12 Ω) = 12/30 A = 0.4 A . . . . load current
The load power is ...
P = I^2·R = (0.4 A)^2·(12 Ω) = 1.92 W . . . . load power
__
<h3>(iii)</h3>
10 minutes is 600 seconds. At the rate of 1.92 J/s, the electrical energy delivered is ...
(600 s)(1.92 J/s) = 1,152 J
__
<h3>(iv)</h3>
The load resistance that will draw maximum power is equal to the source resistance: 18 Ω. This is the conclusion of the Maximum Power Transfer theorem.
The power transferred to 18 Ω is ...
((12 V)/(18 Ω +18 Ω))^2·(18 Ω) = 144/72 W = 2 W
Malleable and ductile
non metals like plastic also have other properties but can't be malleable and ductile so they r most valuable metallic properties