1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatuchka [14]
3 years ago
7

Calculate the maximum load that a 7075 series aluminum alloy bar (with a T6 temper heat treatment) can support without permanent

ly deforming. The bar has a square cross section whose edge length is 8.1 mm.
Engineering
1 answer:
Aleksandr [31]3 years ago
6 0

Answer:

The maximum load the bar can withstand = 35.43 KN

Explanation:

Ultimate tensile strength of the given aluminium bar \sigma = 540 M pa

Cross section area of the bar = 8.1^{2}  = 65.61 mm^{2}

We know that the ultimate strength of the bar is calculated from

\sigma = \frac{P_{max} }{A}

540 = \frac{P_{max} }{65.61}

P_{max} = 540 × 65.61

P_{max} =  35.43 KN

Therefore the maximum load the bar can withstand = 35.43 KN

You might be interested in
Consider a dip-coating process where a very long (assume infinitely long) wire(solid) with radius, ri, is being pulled verticall
Gekata [30.6K]

Answer:

See explaination and attachment.

Explanation:

Navier-Stokes equation is to momentum what the continuity equation is to conservation of mass. It simply enforces F=ma in an Eulerian frame.

The starting point of the Navier-Stokes equations is the equilibrium equation.

The first key step is to partition the stress in the equations into hydrostatic (pressure) and deviatoric constituents.

The second step is to relate the deviatoric stress to viscosity in the fluid.

The final step is to impose any special cases of interest, usually incompressibility.

Please kindly check attachment for step by step solution.

6 0
3 years ago
A insulated vessel s has two compartments separated by a membreane. On one side is 1kg of steam at 400 degC and 200 bar. The oth
Lilit [14]

Answer:

See explaination

Explanation:

See attachment for the detailed step by step solution of the given problem.

5 0
2 years ago
A rigid, well-insulated tank of volume 0.9 m is initially evacuated. At time t = 0, air from the surroundings at 1 bar, 27°C beg
Eva8 [605]

Answer:

\dot{w}= -0.303 KW

Explanation:

This is the case of unsteady flow process because properties are changing with time.

From first law of thermodynamics for unsteady flow process

\dfrac{dU}{dt}=\dot{m_i}h_i+\dot{Q}-\dot{m_e}h_i+\dot{w}

Given that tank is insulated so\dot{Q}=0 and no mass is leaving so

\dot{m_e}=0

\int dU=\int \dot{m_i}h_i\ dt-\int \dot{w}\ dt

m_2u_2-m_1u_1=(m_2-m_1)h_i- \dot{w}\Delta t

Mass conservation m_2-m_1=m_e-m_i

m_1,m_2 is the initial and final mass in the system respectively.

Initially tank is evacuated so m_1=0

We know that for air u=C_vT ,h=C_p T,P_2v_2=m_2RT_2

m_2=0.42 kg

So now putting values

0.42 \times 0.71 \times 730=0.42\times 1.005\times 300- \dot{w} \times 300

\dot{w}= -0.303 KW

3 0
3 years ago
What two things must be included in your function definition?
mars1129 [50]

Explanation:

commands to be and function arguments

8 0
3 years ago
In subsea oil and natural gas production, hydrocarbon fluids may leave the reservoir with a temperature of 70°C and flow in subs
NeTakaya

Answer:

For detailed answer of "

In subsea oil and natural gas production, hydrocarbon fluids may leave the reservoir with a temperature of 70°C and flow in subsea surrounding of S°C. As a result of the temperature difference between the reservoir and the subsea surrounding, the knowledge of heat transfer is critical to prevent gas hydrate and wax deposition blockages. Consider a subsea pipeline with inner diameter of O.S m and wall thickness of 8 mm is used for transporting liquid hydrocarbon at an average temperature of 70°C, and the average convection heat transfer coefficient on the inner pipeline surface is estimated to be 2SO W/m2.K. The subsea surrounding has a temperature of soc and the average convection heat transfer coefficient on the outer pipeline surface is estimated to be ISO W /m2 .K. If the pipeline is made of material with thermal conductivity of 60 W/m.K, by using the heat conduction equation (a) obtain the temperature variation in the pipeline wall, (b) determine the inner surface temperature of the pipeline wall, (c) obtain the mathematical expression for the rate of heat loss from the liquid hydrocarbon in the pipeline, and (d) determine the heat flux through the outer pipeline surface."

see attachment.

Explanation:

Download pdf
3 0
3 years ago
Other questions:
  • What is a ton of refrigeration?
    7·1 answer
  • Ayuda porfavor es para una tarea de mi capacitación de desarrollo microempresarial
    14·1 answer
  • Can the United States defeat Iranian forces
    9·2 answers
  • At the grocery store you place a pumpkin with a mass of 12.5 lb on the produce spring scale. The spring in the scale operates su
    5·1 answer
  • Overview In C, a string is simply an array of characters. We have used literal strings all along – the stuff in between the quot
    11·1 answer
  • A non-entrepreneurship, work-based, agricultural type of SAE, in which a student learns and gains skills in a paid or unpaid pos
    15·1 answer
  • An aircraft is in a steady level turn at a flight speed of 200 ft/s and a turn rate about the local vertical of 5 deg/s. Thrust
    8·1 answer
  • What is the output of a system with the transfer function s/(s + 3)^2 and subject to a unit step input at time t = 0?
    5·1 answer
  • Let CFG G be the following grammar.
    7·2 answers
  • ) Assuming different AM regulations; the receiver is using mixer with subtracting format. The frequency selectivity ratio is app
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!