Answer:
0.1593 L.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have two different values of V and T:
<em>P₁V₁T₂ = P₂V₂T₁</em>
<em></em>
P₁ = 600 torr/760 = 0.789 atm, V₁ = 185.0 mL = 0.185 L, T₁ = 25.0°C + 273 = 298.0 K.
P₂ (at STP) = 1.0 atm, V₂ = ??? L, T₂ (at STP = 0.0°C) = 0.0°C + 273 = 273.0 K.
<em>∴ V₂ = P₁V₁T₂/P₂T₁</em> = (0.789 atm)(0.185 mL)(298.0 K)/(1.0 atm)(273.0 K) = <em>0.1593 L.</em>
Answer:
If I could have a super power it would be invisibility. Sometimes you wish you weren't there and if you were hiding from someone then they couldn't find you.
Answer:
<h2>5.11 L</h2>
Explanation:
The new volume can be found by using the formula for Boyle's law which is

Since we are finding the new volume

From the question we have

We have the final answer as
<h3>5.11 L</h3>
Hope this helps you
Answer:
The final volume when pressure is changed is 126.1mL
Explanation:
Based on Boyle's law, in a gas the volume is inversely proportional to its pressure when temperature remains constant. The equation is:
P₁V₁ = P₂V₂
<em>Where P is pressure and V volume of 1, intial state and 2, final state.</em>
<em />
Computing the values of the problem:
350mmHg*200mL = 555mmHgV₂
126.1mmHg = V₂
<h3>The final volume when pressure is changed is 126.1mL</h3>
Answer:
number of individuals
Explanation:
calculated by dividing the number of people by area