Answer: 5622.6g
Explanation:
Note: Kf for water is 1.86°C/m.
The simple calculation is in the attachment below.
Answer:
Kc for this reaction is 0.06825
Explanation:
Step 1: Data given
Number of moles formaldehyde CH2O = 0.055 moles
Volume = 500 mL = 0.500 L
At equilibrium, the CH2O(g) concentration = 0.051 mol
Step 2: The balanced equation
CH2O <=> H2 + CO
Step 3: Calculate the initial concentrations
Concentration = moles / volume
[CH2O] = 0.055 moles . 0.500 L
[CH2O] = 0.11 M
[H2] = 0M
[CO] = 0M
Step 4: The concentration at the equilibrium
[CH2O] = 0.11 - X M = 0.051 M
[H2] = XM
[CO] = XM
[CH2O] = 0.11 - X M = 0.051 M
X = 0.11 - 0.051 = 0.059
[H2] = XM = 0.059 M
[CO] = XM = 0.059 M
Step 5: Calculate Kc
Kc = [H2][CO]/[CHO]
Kc = (0.059 * 0.059) / 0.051
Kc = 0.06825
Kc for this reaction is 0.06825
Answer:
The balanced chemical equation: NH₃ + 2 HF → NH₄⁺ + HF₂⁻
Explanation:
According to the Brønsted–Lowry acid–base theory, the acid- base reaction is a type of chemical reaction between the acid and base to give a conjugate acid and a conjugate base.
In this reaction, a Brønsted–Lowry acid loses a proton to form a conjugate base. Whereas, a Brønsted–Lowry base accepts a proton to form a conjugate acid.
Acid + Base ⇌ Conjugate Base + Conjugate Acid
The acid dissociation constant (Kₐ) <em>signifies the acidic strength of a chemical species.</em>
∵ pKₐ = - log Kₐ
Thus for a strong acid, Kₐ value is large and pKₐ value is small.
pKₐ (HF) = 3.2 → strong acid
pKₐ (NH₃) = 38 → weak acid
<u>The chemical reaction involved in the dissolution process:</u>
NH₃ + 2 HF → NH₄⁺ + HF₂⁻
In this acid-base reaction, the acid HF reacts with NH₃ base to give the conjugate base HF₂⁻ and conjugate acid NH₄⁺.
<u>HF (acid) donates a proton to form the conjugate base, HF₂⁻ ion. NH₃ (base) accepts a proton to form the conjugate acid. </u>
The metal car airodinamics with body style and weight increased speed